利用机器学习预测航空维修中的安全态度:一项探索性研究

IF 3.8 Q2 TRANSPORTATION
Christos Emexidis , Anna V. Chatzi , Kyriakos I. Kourousis
{"title":"利用机器学习预测航空维修中的安全态度:一项探索性研究","authors":"Christos Emexidis ,&nbsp;Anna V. Chatzi ,&nbsp;Kyriakos I. Kourousis","doi":"10.1016/j.trip.2025.101596","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the application of machine learning techniques in predicting safety attitudes among aviation maintenance personnel. Personality traits and demographic information are used for this purpose, with data obtained from an online dataset. The Random Forest machine learning algorithm was utilised to identify the relationships and to enable predictions. The obtained results indicated that extraversion had the most positive influence, followed closely by openness. On the other hand, neuroticism had the most negative impact. Total years of experience and experience in the current role are, on the other hand, the most influential demographic information. Combining personality traits with demographic information can improve safety attitude predictions. Nevertheless, definitive causal inferences cannot be established, as further analysis is required to verify the suitability of the Random Forest algorithm relative to other machine learning algorithms.</div></div>","PeriodicalId":36621,"journal":{"name":"Transportation Research Interdisciplinary Perspectives","volume":"33 ","pages":"Article 101596"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting safety attitudes in aviation maintenance using machine learning: An exploratory study\",\"authors\":\"Christos Emexidis ,&nbsp;Anna V. Chatzi ,&nbsp;Kyriakos I. Kourousis\",\"doi\":\"10.1016/j.trip.2025.101596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the application of machine learning techniques in predicting safety attitudes among aviation maintenance personnel. Personality traits and demographic information are used for this purpose, with data obtained from an online dataset. The Random Forest machine learning algorithm was utilised to identify the relationships and to enable predictions. The obtained results indicated that extraversion had the most positive influence, followed closely by openness. On the other hand, neuroticism had the most negative impact. Total years of experience and experience in the current role are, on the other hand, the most influential demographic information. Combining personality traits with demographic information can improve safety attitude predictions. Nevertheless, definitive causal inferences cannot be established, as further analysis is required to verify the suitability of the Random Forest algorithm relative to other machine learning algorithms.</div></div>\",\"PeriodicalId\":36621,\"journal\":{\"name\":\"Transportation Research Interdisciplinary Perspectives\",\"volume\":\"33 \",\"pages\":\"Article 101596\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Interdisciplinary Perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590198225002751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Interdisciplinary Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590198225002751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨机器学习技术在航空维修人员安全态度预测中的应用。人格特征和人口统计信息用于此目的,数据来自在线数据集。随机森林机器学习算法被用来识别关系并进行预测。结果表明,外向性的积极影响最大,其次是开放性。另一方面,神经质的负面影响最大。另一方面,总经验年数和目前职位的经验是最具影响力的人口信息。将人格特征与人口统计信息相结合可以改善安全态度预测。然而,明确的因果推论无法建立,因为需要进一步分析来验证随机森林算法相对于其他机器学习算法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting safety attitudes in aviation maintenance using machine learning: An exploratory study
This study explores the application of machine learning techniques in predicting safety attitudes among aviation maintenance personnel. Personality traits and demographic information are used for this purpose, with data obtained from an online dataset. The Random Forest machine learning algorithm was utilised to identify the relationships and to enable predictions. The obtained results indicated that extraversion had the most positive influence, followed closely by openness. On the other hand, neuroticism had the most negative impact. Total years of experience and experience in the current role are, on the other hand, the most influential demographic information. Combining personality traits with demographic information can improve safety attitude predictions. Nevertheless, definitive causal inferences cannot be established, as further analysis is required to verify the suitability of the Random Forest algorithm relative to other machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Research Interdisciplinary Perspectives
Transportation Research Interdisciplinary Perspectives Engineering-Automotive Engineering
CiteScore
12.90
自引率
0.00%
发文量
185
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信