流域规划中BMP多目标优化的新一代参数缩减技术

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hoda S. Razavi , Gregorio Toscano , A. Pouyan Nejadhashemi , Kalyanmoy Deb , Lewis Linker
{"title":"流域规划中BMP多目标优化的新一代参数缩减技术","authors":"Hoda S. Razavi ,&nbsp;Gregorio Toscano ,&nbsp;A. Pouyan Nejadhashemi ,&nbsp;Kalyanmoy Deb ,&nbsp;Lewis Linker","doi":"10.1016/j.envsoft.2025.106651","DOIUrl":null,"url":null,"abstract":"<div><div>Best Management Practices (BMPs) reduce pollutants, but cost, efficiency, and site-specific constraints limit implementation in water resources planning. This study optimized BMP selection in West Virginia's Chesapeake Bay watershed, where nutrient pollution, sedimentation, runoff, and urbanization are major challenges. The Chesapeake Assessment Scenario Tool was integrated with a multiobjective optimization algorithm to identify cost-effective BMP strategies. Four BMP groups were evaluated: agricultural, developed, septic, and natural, targeting nitrogen reduction. The optimization involved 205 BMPs and up to 65,260 variables. The variables consist of four key components: land-river segment, agency, load source, and BMP type. Three land-use-based techniques were developed using innovization to enhance optimization efficiency by extracting knowledge from optimization results to reduce variables. The best method achieved a 97 % reduction in variables without compromising solution quality. These findings demonstrate that large, complex watershed optimization problems can now be solved efficiently, enabling more scalable and effective regional water management strategies.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106651"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-generation techniques for parameter reduction for BMP multiobjective optimization in watershed planning\",\"authors\":\"Hoda S. Razavi ,&nbsp;Gregorio Toscano ,&nbsp;A. Pouyan Nejadhashemi ,&nbsp;Kalyanmoy Deb ,&nbsp;Lewis Linker\",\"doi\":\"10.1016/j.envsoft.2025.106651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Best Management Practices (BMPs) reduce pollutants, but cost, efficiency, and site-specific constraints limit implementation in water resources planning. This study optimized BMP selection in West Virginia's Chesapeake Bay watershed, where nutrient pollution, sedimentation, runoff, and urbanization are major challenges. The Chesapeake Assessment Scenario Tool was integrated with a multiobjective optimization algorithm to identify cost-effective BMP strategies. Four BMP groups were evaluated: agricultural, developed, septic, and natural, targeting nitrogen reduction. The optimization involved 205 BMPs and up to 65,260 variables. The variables consist of four key components: land-river segment, agency, load source, and BMP type. Three land-use-based techniques were developed using innovization to enhance optimization efficiency by extracting knowledge from optimization results to reduce variables. The best method achieved a 97 % reduction in variables without compromising solution quality. These findings demonstrate that large, complex watershed optimization problems can now be solved efficiently, enabling more scalable and effective regional water management strategies.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"193 \",\"pages\":\"Article 106651\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003354\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003354","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最佳管理实践(BMPs)可以减少污染物,但成本、效率和特定地点的限制限制了水资源规划的实施。该研究优化了西弗吉尼亚州切萨皮克湾流域的BMP选择,该流域的营养物污染、沉积、径流和城市化是主要挑战。将Chesapeake评估情景工具与多目标优化算法相结合,以确定具有成本效益的BMP策略。评估了四种BMP组:农业、发达、化粪池和自然,以氮还原为目标。优化涉及205个bmp和多达65,260个变量。变量包括四个关键组成部分:陆地河段、代理、负载源和BMP类型。利用创新技术,从优化结果中提取知识,减少变量,提高优化效率。最好的方法在不影响溶液质量的情况下减少了97%的变量。这些发现表明,现在可以有效地解决大型、复杂的流域优化问题,从而实现更具可扩展性和有效性的区域水管理战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-generation techniques for parameter reduction for BMP multiobjective optimization in watershed planning
Best Management Practices (BMPs) reduce pollutants, but cost, efficiency, and site-specific constraints limit implementation in water resources planning. This study optimized BMP selection in West Virginia's Chesapeake Bay watershed, where nutrient pollution, sedimentation, runoff, and urbanization are major challenges. The Chesapeake Assessment Scenario Tool was integrated with a multiobjective optimization algorithm to identify cost-effective BMP strategies. Four BMP groups were evaluated: agricultural, developed, septic, and natural, targeting nitrogen reduction. The optimization involved 205 BMPs and up to 65,260 variables. The variables consist of four key components: land-river segment, agency, load source, and BMP type. Three land-use-based techniques were developed using innovization to enhance optimization efficiency by extracting knowledge from optimization results to reduce variables. The best method achieved a 97 % reduction in variables without compromising solution quality. These findings demonstrate that large, complex watershed optimization problems can now be solved efficiently, enabling more scalable and effective regional water management strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信