氨基酸修饰石墨烯作为抗癌药物羟基脲和6-硫鸟嘌呤的有前途的纳米载体:DFT和MD研究

IF 5.45 Q1 Physics and Astronomy
Lala Adetia Marlina , Aulia Sukma Hutama , Saifuddin Aziz , Suci Zulaikha Hildayani , Maula Eka Sriyani , Yanuar Setiadi , Patrik Chandra , Muthia Rahayu Iresha
{"title":"氨基酸修饰石墨烯作为抗癌药物羟基脲和6-硫鸟嘌呤的有前途的纳米载体:DFT和MD研究","authors":"Lala Adetia Marlina ,&nbsp;Aulia Sukma Hutama ,&nbsp;Saifuddin Aziz ,&nbsp;Suci Zulaikha Hildayani ,&nbsp;Maula Eka Sriyani ,&nbsp;Yanuar Setiadi ,&nbsp;Patrik Chandra ,&nbsp;Muthia Rahayu Iresha","doi":"10.1016/j.nanoso.2025.101534","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the potential of amino acid-modified graphene (AA-GR) as an effective nanocarrier for delivering two anticancer drugs: hydroxyurea (HU) and 6-thioguanine (TG). Using Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations, the interactions between AA-modified graphene and the selected drugs were thoroughly investigated. Various amino acids—alanine, cysteine, glycine, tryptophan, and tyrosine—were anchored to the graphene surface, with tryptophan-modified graphene (Trp-GR) exhibiting the strongest drug binding. DFT calculations revealed that the adsorption of HU and TG onto AA-GR surfaces is exothermic and spontaneous, with Trp-GR displaying the highest adsorption energy (−31.83 kcal/mol) and the most favorable thermodynamic properties. The calculated Gibbs free energy (ΔG) values for both drugs were negative, confirming the stability of the complexes. MD simulations further demonstrated the stability and dynamic behavior of the drug–nanocarrier complexes in aqueous environments, highlighting the suitability of AA-GR as a potential drug delivery system. The results also show that Trp-GR can adsorb up to five TG molecules, with efficient and rapid drug desorption at physiological temperatures, making it an ideal candidate for controlled drug release. This work paves the way for the development of amino acid-modified graphene as a promising platform for targeted anticancer drug delivery.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"43 ","pages":"Article 101534"},"PeriodicalIF":5.4500,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amino acid-modified graphene as a promising nanocarrier for anticancer drugs hydroxyurea and 6-thioguanine: DFT and MD investigations\",\"authors\":\"Lala Adetia Marlina ,&nbsp;Aulia Sukma Hutama ,&nbsp;Saifuddin Aziz ,&nbsp;Suci Zulaikha Hildayani ,&nbsp;Maula Eka Sriyani ,&nbsp;Yanuar Setiadi ,&nbsp;Patrik Chandra ,&nbsp;Muthia Rahayu Iresha\",\"doi\":\"10.1016/j.nanoso.2025.101534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the potential of amino acid-modified graphene (AA-GR) as an effective nanocarrier for delivering two anticancer drugs: hydroxyurea (HU) and 6-thioguanine (TG). Using Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations, the interactions between AA-modified graphene and the selected drugs were thoroughly investigated. Various amino acids—alanine, cysteine, glycine, tryptophan, and tyrosine—were anchored to the graphene surface, with tryptophan-modified graphene (Trp-GR) exhibiting the strongest drug binding. DFT calculations revealed that the adsorption of HU and TG onto AA-GR surfaces is exothermic and spontaneous, with Trp-GR displaying the highest adsorption energy (−31.83 kcal/mol) and the most favorable thermodynamic properties. The calculated Gibbs free energy (ΔG) values for both drugs were negative, confirming the stability of the complexes. MD simulations further demonstrated the stability and dynamic behavior of the drug–nanocarrier complexes in aqueous environments, highlighting the suitability of AA-GR as a potential drug delivery system. The results also show that Trp-GR can adsorb up to five TG molecules, with efficient and rapid drug desorption at physiological temperatures, making it an ideal candidate for controlled drug release. This work paves the way for the development of amino acid-modified graphene as a promising platform for targeted anticancer drug delivery.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"43 \",\"pages\":\"Article 101534\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X25001040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25001040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了氨基酸修饰石墨烯(AA-GR)作为两种抗癌药物:羟基脲(HU)和6-硫鸟嘌呤(TG)的有效纳米载体的潜力。利用密度泛函理论(DFT)和分子动力学(MD)模拟,深入研究了aa改性石墨烯与所选药物之间的相互作用。各种氨基酸——丙氨酸、半胱氨酸、甘氨酸、色氨酸和酪氨酸——被锚定在石墨烯表面,其中色氨酸修饰的石墨烯(色氨酸- gr)表现出最强的药物结合。DFT计算表明,在AA-GR表面上,HU和TG的吸附是自发和放热的,其中Trp-GR表现出最高的吸附能(- 31.83 kcal/mol)和最有利的热力学性质。计算出的两种药物的吉布斯自由能(ΔG)值均为负,证实了配合物的稳定性。MD模拟进一步证明了药物-纳米载体配合物在水环境中的稳定性和动态行为,突出了AA-GR作为潜在药物递送系统的适用性。结果还表明,Trp-GR可以吸附多达5个TG分子,在生理温度下具有高效、快速的药物解吸能力,是药物控释的理想候选材料。这项工作为氨基酸修饰石墨烯作为靶向抗癌药物递送的有前途的平台的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amino acid-modified graphene as a promising nanocarrier for anticancer drugs hydroxyurea and 6-thioguanine: DFT and MD investigations
This study investigates the potential of amino acid-modified graphene (AA-GR) as an effective nanocarrier for delivering two anticancer drugs: hydroxyurea (HU) and 6-thioguanine (TG). Using Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations, the interactions between AA-modified graphene and the selected drugs were thoroughly investigated. Various amino acids—alanine, cysteine, glycine, tryptophan, and tyrosine—were anchored to the graphene surface, with tryptophan-modified graphene (Trp-GR) exhibiting the strongest drug binding. DFT calculations revealed that the adsorption of HU and TG onto AA-GR surfaces is exothermic and spontaneous, with Trp-GR displaying the highest adsorption energy (−31.83 kcal/mol) and the most favorable thermodynamic properties. The calculated Gibbs free energy (ΔG) values for both drugs were negative, confirming the stability of the complexes. MD simulations further demonstrated the stability and dynamic behavior of the drug–nanocarrier complexes in aqueous environments, highlighting the suitability of AA-GR as a potential drug delivery system. The results also show that Trp-GR can adsorb up to five TG molecules, with efficient and rapid drug desorption at physiological temperatures, making it an ideal candidate for controlled drug release. This work paves the way for the development of amino acid-modified graphene as a promising platform for targeted anticancer drug delivery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信