金属-联苯纳米界面的第一性原理研究:结构、电子和催化性质

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maicon P. Lebre, Dominike Pacine, Erika N. Lima, Alexandre A. C. Cotta and Igor S. S. de Oliveira*, 
{"title":"金属-联苯纳米界面的第一性原理研究:结构、电子和催化性质","authors":"Maicon P. Lebre,&nbsp;Dominike Pacine,&nbsp;Erika N. Lima,&nbsp;Alexandre A. C. Cotta and Igor S. S. de Oliveira*,&nbsp;","doi":"10.1021/acsanm.5c02590","DOIUrl":null,"url":null,"abstract":"<p >Understanding how two-dimensional (2D) carbon allotropes interact with metal substrates is crucial for advancing their integration into electronic and catalytic devices. Among these materials, biphenylene (BPN) stands out due to its nonbenzenoid topology, intrinsic metallicity, and high thermal stability, offering unique opportunities beyond graphene. However, the fundamental nature of BPN–metal interfaces, particularly how the substrate influences their structural, electronic, and catalytic properties, remains largely unexplored. In this work, we employ first-principles density functional theory (DFT) calculations to investigate these properties for BPN supported on (111) surfaces of Ag, Au, Ni, Pd, Pt, Cu, Al, and the Cu<sub>3</sub>Au alloy. Our results show that the interaction strength between BPN and the substrate governs its stability, corrugation, electronic hybridization, and interfacial charge transfer. In particular, we observe a clear trend where weakly interacting metals preserve the intrinsic features of BPN, while more reactive substrates lead to significant structural and electronic modifications. We further evaluate the hydrogen evolution reaction (HER) activity of these systems, identifying Pd, Pt, Ag, and Cu as promising catalysts. Notably, Ag and Cu offer a favorable combination of catalytic performance, cost, and chemical stability. These findings provide valuable insights into the design of BPN–metal interfaces for future applications in catalysis and nanoelectronics.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 33","pages":"16349–16360"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c02590","citationCount":"0","resultStr":"{\"title\":\"First-Principles Study of Metal–Biphenylene Nanoscale Interfaces: Structural, Electronic, and Catalytic Properties\",\"authors\":\"Maicon P. Lebre,&nbsp;Dominike Pacine,&nbsp;Erika N. Lima,&nbsp;Alexandre A. C. Cotta and Igor S. S. de Oliveira*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding how two-dimensional (2D) carbon allotropes interact with metal substrates is crucial for advancing their integration into electronic and catalytic devices. Among these materials, biphenylene (BPN) stands out due to its nonbenzenoid topology, intrinsic metallicity, and high thermal stability, offering unique opportunities beyond graphene. However, the fundamental nature of BPN–metal interfaces, particularly how the substrate influences their structural, electronic, and catalytic properties, remains largely unexplored. In this work, we employ first-principles density functional theory (DFT) calculations to investigate these properties for BPN supported on (111) surfaces of Ag, Au, Ni, Pd, Pt, Cu, Al, and the Cu<sub>3</sub>Au alloy. Our results show that the interaction strength between BPN and the substrate governs its stability, corrugation, electronic hybridization, and interfacial charge transfer. In particular, we observe a clear trend where weakly interacting metals preserve the intrinsic features of BPN, while more reactive substrates lead to significant structural and electronic modifications. We further evaluate the hydrogen evolution reaction (HER) activity of these systems, identifying Pd, Pt, Ag, and Cu as promising catalysts. Notably, Ag and Cu offer a favorable combination of catalytic performance, cost, and chemical stability. These findings provide valuable insights into the design of BPN–metal interfaces for future applications in catalysis and nanoelectronics.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 33\",\"pages\":\"16349–16360\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c02590\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02590\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02590","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解二维(2D)碳同素异形体如何与金属衬底相互作用对于推进其集成到电子和催化装置中至关重要。在这些材料中,联苯(BPN)因其非苯类拓扑结构、固有金属丰度和高热稳定性而脱颖而出,提供了石墨烯以外的独特机会。然而,bpn -金属界面的基本性质,特别是衬底如何影响其结构、电子和催化性能,在很大程度上仍未被探索。在这项工作中,我们采用第一性原理密度泛函理论(DFT)计算来研究支持在Ag、Au、Ni、Pd、Pt、Cu、Al和Cu3Au合金(111)表面的BPN的这些性质。我们的研究结果表明,BPN与衬底之间的相互作用强度决定了它的稳定性、波纹、电子杂化和界面电荷转移。特别是,我们观察到一个明显的趋势,即弱相互作用的金属保留了BPN的固有特征,而更多的反应性衬底导致显著的结构和电子修饰。我们进一步评估了这些体系的析氢反应(HER)活性,确定了Pd、Pt、Ag和Cu是有前途的催化剂。值得注意的是,Ag和Cu提供了催化性能、成本和化学稳定性的良好组合。这些发现为bpn -金属界面的设计提供了有价值的见解,为未来在催化和纳米电子学中的应用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Principles Study of Metal–Biphenylene Nanoscale Interfaces: Structural, Electronic, and Catalytic Properties

Understanding how two-dimensional (2D) carbon allotropes interact with metal substrates is crucial for advancing their integration into electronic and catalytic devices. Among these materials, biphenylene (BPN) stands out due to its nonbenzenoid topology, intrinsic metallicity, and high thermal stability, offering unique opportunities beyond graphene. However, the fundamental nature of BPN–metal interfaces, particularly how the substrate influences their structural, electronic, and catalytic properties, remains largely unexplored. In this work, we employ first-principles density functional theory (DFT) calculations to investigate these properties for BPN supported on (111) surfaces of Ag, Au, Ni, Pd, Pt, Cu, Al, and the Cu3Au alloy. Our results show that the interaction strength between BPN and the substrate governs its stability, corrugation, electronic hybridization, and interfacial charge transfer. In particular, we observe a clear trend where weakly interacting metals preserve the intrinsic features of BPN, while more reactive substrates lead to significant structural and electronic modifications. We further evaluate the hydrogen evolution reaction (HER) activity of these systems, identifying Pd, Pt, Ag, and Cu as promising catalysts. Notably, Ag and Cu offer a favorable combination of catalytic performance, cost, and chemical stability. These findings provide valuable insights into the design of BPN–metal interfaces for future applications in catalysis and nanoelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信