结构调控α-Fe2O3/MnFe2O4纳米锂离子电池负极材料

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nuo Xu, Zi-Yu Dong, Li-Yan Tian, Yun-Heng Li, Yu-Hang Zhang, Pengfei Wang, Gang Yang* and Fa-Nian Shi*, 
{"title":"结构调控α-Fe2O3/MnFe2O4纳米锂离子电池负极材料","authors":"Nuo Xu,&nbsp;Zi-Yu Dong,&nbsp;Li-Yan Tian,&nbsp;Yun-Heng Li,&nbsp;Yu-Hang Zhang,&nbsp;Pengfei Wang,&nbsp;Gang Yang* and Fa-Nian Shi*,&nbsp;","doi":"10.1021/acsanm.5c03466","DOIUrl":null,"url":null,"abstract":"<p >The structural differences in electrode materials significantly influence the electrochemical performance of lithium-ion batteries (LIBs). In this work, three composite nanomaterials with different structures and compositions were synthesized by the coprecipitation method, using FeCl<sub>3</sub>·6H<sub>2</sub>O and MnCl<sub>2</sub>·4H<sub>2</sub>O as raw materials and water as the solvent, by regulating the calcination temperature of the precursors: a composite of iron oxide and manganese dioxide, a single hematite-phase α-Fe<sub>2–<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3</sub>, and a biphasic composite consisting of hematite (α-Fe<sub>2</sub>O<sub>3</sub>) and manganese ferrite (MnFe<sub>2</sub>O<sub>4</sub>) phases. The properties of the nanomaterials in the three structures display significant differences. Notably, the α-Fe<sub>2</sub>O<sub>3</sub>/MnFe<sub>2</sub>O<sub>4</sub> electrode exhibits a more uniform particle size distribution and reduced agglomeration, with an average particle size of 79 nm, resulting in enhanced electrochemical performance. After 140 cycles at a current density of 0.1 A g<sup>–1</sup>, the α-Fe<sub>2</sub>O<sub>3</sub>/MnFe<sub>2</sub>O<sub>4</sub> electrode retains a reversible capacity of 1124 mAh g<sup>–1</sup>. In the high-current test at 1 A g<sup>–1</sup>, the electrode also exhibits excellent long-term cycling stability, maintaining a capacity of 408 mAh g<sup>–1</sup> after 1000 cycles. This study highlights the significant impact of subtle structural differences on electrochemical properties, offering insights into the development and modification of anode materials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 33","pages":"16592–16602"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Regulated α-Fe2O3/MnFe2O4 Nanomaterials for Lithium-Ion Battery Anodes\",\"authors\":\"Nuo Xu,&nbsp;Zi-Yu Dong,&nbsp;Li-Yan Tian,&nbsp;Yun-Heng Li,&nbsp;Yu-Hang Zhang,&nbsp;Pengfei Wang,&nbsp;Gang Yang* and Fa-Nian Shi*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The structural differences in electrode materials significantly influence the electrochemical performance of lithium-ion batteries (LIBs). In this work, three composite nanomaterials with different structures and compositions were synthesized by the coprecipitation method, using FeCl<sub>3</sub>·6H<sub>2</sub>O and MnCl<sub>2</sub>·4H<sub>2</sub>O as raw materials and water as the solvent, by regulating the calcination temperature of the precursors: a composite of iron oxide and manganese dioxide, a single hematite-phase α-Fe<sub>2–<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3</sub>, and a biphasic composite consisting of hematite (α-Fe<sub>2</sub>O<sub>3</sub>) and manganese ferrite (MnFe<sub>2</sub>O<sub>4</sub>) phases. The properties of the nanomaterials in the three structures display significant differences. Notably, the α-Fe<sub>2</sub>O<sub>3</sub>/MnFe<sub>2</sub>O<sub>4</sub> electrode exhibits a more uniform particle size distribution and reduced agglomeration, with an average particle size of 79 nm, resulting in enhanced electrochemical performance. After 140 cycles at a current density of 0.1 A g<sup>–1</sup>, the α-Fe<sub>2</sub>O<sub>3</sub>/MnFe<sub>2</sub>O<sub>4</sub> electrode retains a reversible capacity of 1124 mAh g<sup>–1</sup>. In the high-current test at 1 A g<sup>–1</sup>, the electrode also exhibits excellent long-term cycling stability, maintaining a capacity of 408 mAh g<sup>–1</sup> after 1000 cycles. This study highlights the significant impact of subtle structural differences on electrochemical properties, offering insights into the development and modification of anode materials.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 33\",\"pages\":\"16592–16602\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03466\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03466","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电极材料的结构差异对锂离子电池的电化学性能有显著影响。本文以FeCl3·6H2O和MnCl2·4H2O为原料,以水为溶剂,通过调节前驱体的煅烧温度,采用共沉淀法合成了三种不同结构和组成的复合纳米材料:氧化铁与二氧化锰复合材料、单赤铁矿相α-Fe2-xMnxO3复合材料和赤铁矿(α-Fe2O3)与铁酸锰(MnFe2O4)双相复合材料。在这三种结构中,纳米材料的性能表现出显著差异。值得注意的是,α-Fe2O3/MnFe2O4电极的粒径分布更加均匀,团聚现象减少,平均粒径为79 nm,从而提高了电化学性能。在0.1 a g-1电流密度下循环140次后,α-Fe2O3/MnFe2O4电极仍保持1124 mAh g-1的可逆容量。在1 A g-1的大电流测试中,电极也表现出优异的长期循环稳定性,在1000次循环后保持408 mAh g-1的容量。这项研究强调了细微的结构差异对电化学性能的重要影响,为阳极材料的开发和改性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure-Regulated α-Fe2O3/MnFe2O4 Nanomaterials for Lithium-Ion Battery Anodes

Structure-Regulated α-Fe2O3/MnFe2O4 Nanomaterials for Lithium-Ion Battery Anodes

The structural differences in electrode materials significantly influence the electrochemical performance of lithium-ion batteries (LIBs). In this work, three composite nanomaterials with different structures and compositions were synthesized by the coprecipitation method, using FeCl3·6H2O and MnCl2·4H2O as raw materials and water as the solvent, by regulating the calcination temperature of the precursors: a composite of iron oxide and manganese dioxide, a single hematite-phase α-Fe2–xMnxO3, and a biphasic composite consisting of hematite (α-Fe2O3) and manganese ferrite (MnFe2O4) phases. The properties of the nanomaterials in the three structures display significant differences. Notably, the α-Fe2O3/MnFe2O4 electrode exhibits a more uniform particle size distribution and reduced agglomeration, with an average particle size of 79 nm, resulting in enhanced electrochemical performance. After 140 cycles at a current density of 0.1 A g–1, the α-Fe2O3/MnFe2O4 electrode retains a reversible capacity of 1124 mAh g–1. In the high-current test at 1 A g–1, the electrode also exhibits excellent long-term cycling stability, maintaining a capacity of 408 mAh g–1 after 1000 cycles. This study highlights the significant impact of subtle structural differences on electrochemical properties, offering insights into the development and modification of anode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信