基于石墨烯量子点的紫外响应柔性光子突触晶体管用于神经形态视觉系统

IF 3.8
Bum Ho Jeong, Jaewon Lee, Sang Won Kim* and Hui Joon Park*, 
{"title":"基于石墨烯量子点的紫外响应柔性光子突触晶体管用于神经形态视觉系统","authors":"Bum Ho Jeong,&nbsp;Jaewon Lee,&nbsp;Sang Won Kim* and Hui Joon Park*,&nbsp;","doi":"10.1021/acsaom.5c00234","DOIUrl":null,"url":null,"abstract":"<p >The ever-growing demands of the Internet of Things and artificial intelligence are pushing conventional von Neumann architectures beyond their limits, largely due to the physical separation of memory and processing units. Neuromorphic computing, engineered to mimic the massively parallel, ultralow-power operation of the human brain, relies critically on devices that faithfully emulate synaptic function. Here, we report a flexible, ultraviolet (UV)-responsive optoelectronic synaptic transistor that integrates light sensing, memory, and signal processing within a single element. Our device employs graphene quantum dots derived from a functionalized hexa-peri-hexabenzocoronene (HBC-PF6) dispersed in a poly(4-vinylphenol) matrix as a floating gate with an ultrathin Al<sub>2</sub>O<sub>3</sub> tunneling layer and a high-mobility organic semiconductor channel (2,7-dioctyl[1]benzothieno[3,2-<i>b</i>][1]benzothiophene (C8-BTBT)) on an indium tin oxide (ITO) gate electrode. Under UV illumination, photogenerated holes tunnel into the channel while electrons are trapped in the floating gate, inducing a nonvolatile shift in threshold voltage and mimicking synaptic potentiation; a reverse bias erases the memory. The transistors retain stable operation under extreme mechanical bending (±1 mm radius) and exhibit robust synaptic behaviors─excitatory postsynaptic currents, paired-pulse facilitation, short- to long-term plasticity transitions, and reversible long-term potentiation/depression─at energy consumptions as low as 1.2 fJ per event. Finally, an array of these devices implemented in a simple artificial neural network achieves &gt;91% accuracy on handwritten-digit recognition, demonstrating their promise for wearable neuromorphic vision systems.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 8","pages":"1870–1880"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Photonic Synaptic Transistors with UV Responsivity via Graphene Quantum Dots for Neuromorphic Vision Systems\",\"authors\":\"Bum Ho Jeong,&nbsp;Jaewon Lee,&nbsp;Sang Won Kim* and Hui Joon Park*,&nbsp;\",\"doi\":\"10.1021/acsaom.5c00234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The ever-growing demands of the Internet of Things and artificial intelligence are pushing conventional von Neumann architectures beyond their limits, largely due to the physical separation of memory and processing units. Neuromorphic computing, engineered to mimic the massively parallel, ultralow-power operation of the human brain, relies critically on devices that faithfully emulate synaptic function. Here, we report a flexible, ultraviolet (UV)-responsive optoelectronic synaptic transistor that integrates light sensing, memory, and signal processing within a single element. Our device employs graphene quantum dots derived from a functionalized hexa-peri-hexabenzocoronene (HBC-PF6) dispersed in a poly(4-vinylphenol) matrix as a floating gate with an ultrathin Al<sub>2</sub>O<sub>3</sub> tunneling layer and a high-mobility organic semiconductor channel (2,7-dioctyl[1]benzothieno[3,2-<i>b</i>][1]benzothiophene (C8-BTBT)) on an indium tin oxide (ITO) gate electrode. Under UV illumination, photogenerated holes tunnel into the channel while electrons are trapped in the floating gate, inducing a nonvolatile shift in threshold voltage and mimicking synaptic potentiation; a reverse bias erases the memory. The transistors retain stable operation under extreme mechanical bending (±1 mm radius) and exhibit robust synaptic behaviors─excitatory postsynaptic currents, paired-pulse facilitation, short- to long-term plasticity transitions, and reversible long-term potentiation/depression─at energy consumptions as low as 1.2 fJ per event. Finally, an array of these devices implemented in a simple artificial neural network achieves &gt;91% accuracy on handwritten-digit recognition, demonstrating their promise for wearable neuromorphic vision systems.</p>\",\"PeriodicalId\":29803,\"journal\":{\"name\":\"ACS Applied Optical Materials\",\"volume\":\"3 8\",\"pages\":\"1870–1880\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Optical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaom.5c00234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.5c00234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网和人工智能不断增长的需求正在推动传统的冯·诺伊曼架构超越其极限,这主要是由于内存和处理单元的物理分离。神经形态计算(Neuromorphic computing)的设计目的是模仿人类大脑的大规模并行、超低功耗操作,它主要依赖于忠实地模拟突触功能的设备。在这里,我们报告了一种灵活的,紫外线(UV)响应的光电突触晶体管,它集成了光传感,记忆和信号处理在一个单一的元件。我们的器件采用分散在聚(4-乙烯基酚)基质中的功能化六-近六苯并噻吩(HBC-PF6)衍生的石墨烯量子点作为浮栅,在氧化铟锡(ITO)栅极上具有超薄Al2O3隧道层和高迁移率有机半导体通道(2,7-二辛基[1]苯并噻吩[3,2-b][1]苯并噻吩(C8-BTBT))。在紫外线照射下,光产生的空穴隧道进入通道,而电子被困在浮栅中,诱导阈值电压的非易失性位移并模拟突触增强;反向偏压会消除记忆。晶体管在极端机械弯曲(±1mm半径)下保持稳定运行,并表现出强大的突触行为──兴奋性突触后电流、成对脉冲促进、短期到长期的可塑性转变,以及可逆的长期增强/抑制──每事件的能量消耗低至1.2 fJ。最后,在一个简单的人工神经网络中实现的一系列这些设备在手写数字识别上达到了91%的准确率,证明了它们在可穿戴神经形态视觉系统中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible Photonic Synaptic Transistors with UV Responsivity via Graphene Quantum Dots for Neuromorphic Vision Systems

Flexible Photonic Synaptic Transistors with UV Responsivity via Graphene Quantum Dots for Neuromorphic Vision Systems

The ever-growing demands of the Internet of Things and artificial intelligence are pushing conventional von Neumann architectures beyond their limits, largely due to the physical separation of memory and processing units. Neuromorphic computing, engineered to mimic the massively parallel, ultralow-power operation of the human brain, relies critically on devices that faithfully emulate synaptic function. Here, we report a flexible, ultraviolet (UV)-responsive optoelectronic synaptic transistor that integrates light sensing, memory, and signal processing within a single element. Our device employs graphene quantum dots derived from a functionalized hexa-peri-hexabenzocoronene (HBC-PF6) dispersed in a poly(4-vinylphenol) matrix as a floating gate with an ultrathin Al2O3 tunneling layer and a high-mobility organic semiconductor channel (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT)) on an indium tin oxide (ITO) gate electrode. Under UV illumination, photogenerated holes tunnel into the channel while electrons are trapped in the floating gate, inducing a nonvolatile shift in threshold voltage and mimicking synaptic potentiation; a reverse bias erases the memory. The transistors retain stable operation under extreme mechanical bending (±1 mm radius) and exhibit robust synaptic behaviors─excitatory postsynaptic currents, paired-pulse facilitation, short- to long-term plasticity transitions, and reversible long-term potentiation/depression─at energy consumptions as low as 1.2 fJ per event. Finally, an array of these devices implemented in a simple artificial neural network achieves >91% accuracy on handwritten-digit recognition, demonstrating their promise for wearable neuromorphic vision systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信