有机光伏中的人工智能:从(供体/受体)对的分子化学结构预测功率转换效率

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Khoukha Khoussa, Larbi Boubchir, Patrick Lévêque
{"title":"有机光伏中的人工智能:从(供体/受体)对的分子化学结构预测功率转换效率","authors":"Khoukha Khoussa,&nbsp;Larbi Boubchir,&nbsp;Patrick Lévêque","doi":"10.1002/eng2.70334","DOIUrl":null,"url":null,"abstract":"<p>Organic solar cells (OSCs) can achieve power conversion efficiencies around 20%. Yet, further improvements in efficiency and long-term stability are necessary to rival the dominant silicon technology. Key factors influencing OSC performance include device architecture and the active-layer semiconducting organic materials. In this study, we utilize artificial intelligence (AI) techniques to analyze an experimental dataset of organic semiconductors used in the active layer of OSCs. We propose an AI-based methodology to predict the performance of OSCs using the chemical structure of Donor-Acceptor (D/A) pairs. The method employs Simplified Molecular Input Line Entry System (SMILES) representations to extract molecular features. These features, selected according to maximum relevance and minimum redundancy criteria, are used by supervised machine learning regression algorithms to predict the main photovoltaic parameters. Our AI model demonstrates significant predictive power. Further, we use our model to predict the photovoltaic parameters of (D/A) pairs that were not included in our initial dataset. These findings highlight the potential of AI-driven analysis to accurately estimate the photovoltaic potential of new (D/A) pairs before synthesizing them and therefore to accelerate the development of commercially viable OPV devices and to lower the materials research cost.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70334","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Organic Photovoltaics: Predicting Power Conversion Efficiency From the Molecular Chemical Structure of (Donor/Acceptor) Pairs\",\"authors\":\"Khoukha Khoussa,&nbsp;Larbi Boubchir,&nbsp;Patrick Lévêque\",\"doi\":\"10.1002/eng2.70334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic solar cells (OSCs) can achieve power conversion efficiencies around 20%. Yet, further improvements in efficiency and long-term stability are necessary to rival the dominant silicon technology. Key factors influencing OSC performance include device architecture and the active-layer semiconducting organic materials. In this study, we utilize artificial intelligence (AI) techniques to analyze an experimental dataset of organic semiconductors used in the active layer of OSCs. We propose an AI-based methodology to predict the performance of OSCs using the chemical structure of Donor-Acceptor (D/A) pairs. The method employs Simplified Molecular Input Line Entry System (SMILES) representations to extract molecular features. These features, selected according to maximum relevance and minimum redundancy criteria, are used by supervised machine learning regression algorithms to predict the main photovoltaic parameters. Our AI model demonstrates significant predictive power. Further, we use our model to predict the photovoltaic parameters of (D/A) pairs that were not included in our initial dataset. These findings highlight the potential of AI-driven analysis to accurately estimate the photovoltaic potential of new (D/A) pairs before synthesizing them and therefore to accelerate the development of commercially viable OPV devices and to lower the materials research cost.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70334\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

有机太阳能电池(OSCs)可以实现20%左右的功率转换效率。然而,要与占主导地位的硅技术竞争,还需要进一步提高效率和长期稳定性。影响OSC性能的关键因素包括器件结构和有源层半导体有机材料。在这项研究中,我们利用人工智能(AI)技术来分析OSCs有源层中使用的有机半导体实验数据集。我们提出了一种基于人工智能的方法,利用供体-受体(D/A)对的化学结构来预测OSCs的性能。该方法采用简化分子输入行输入系统(Simplified Molecular Input Line Entry System, SMILES)表示来提取分子特征。根据最大相关性和最小冗余标准选择这些特征,由监督机器学习回归算法用于预测主要光伏参数。我们的人工智能模型显示出显著的预测能力。此外,我们使用该模型预测了初始数据集中未包含的(D/A)对的光伏参数。这些发现突出了人工智能驱动分析的潜力,可以在合成新(D/A)对之前准确估计其光伏潜力,从而加速商业上可行的OPV器件的开发,并降低材料研究成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial Intelligence in Organic Photovoltaics: Predicting Power Conversion Efficiency From the Molecular Chemical Structure of (Donor/Acceptor) Pairs

Artificial Intelligence in Organic Photovoltaics: Predicting Power Conversion Efficiency From the Molecular Chemical Structure of (Donor/Acceptor) Pairs

Organic solar cells (OSCs) can achieve power conversion efficiencies around 20%. Yet, further improvements in efficiency and long-term stability are necessary to rival the dominant silicon technology. Key factors influencing OSC performance include device architecture and the active-layer semiconducting organic materials. In this study, we utilize artificial intelligence (AI) techniques to analyze an experimental dataset of organic semiconductors used in the active layer of OSCs. We propose an AI-based methodology to predict the performance of OSCs using the chemical structure of Donor-Acceptor (D/A) pairs. The method employs Simplified Molecular Input Line Entry System (SMILES) representations to extract molecular features. These features, selected according to maximum relevance and minimum redundancy criteria, are used by supervised machine learning regression algorithms to predict the main photovoltaic parameters. Our AI model demonstrates significant predictive power. Further, we use our model to predict the photovoltaic parameters of (D/A) pairs that were not included in our initial dataset. These findings highlight the potential of AI-driven analysis to accurately estimate the photovoltaic potential of new (D/A) pairs before synthesizing them and therefore to accelerate the development of commercially viable OPV devices and to lower the materials research cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信