波动回水区流量与水位变化趋势分析

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Guoshuai Zhang, Qi Chen, Yisen Wang, Zhijing Li, Yinjun Zhou, Zhongwu Jin
{"title":"波动回水区流量与水位变化趋势分析","authors":"Guoshuai Zhang,&nbsp;Qi Chen,&nbsp;Yisen Wang,&nbsp;Zhijing Li,&nbsp;Yinjun Zhou,&nbsp;Zhongwu Jin","doi":"10.1111/jfr3.70096","DOIUrl":null,"url":null,"abstract":"<p>Under the operation of the large reservoir, the variation law of water level in the fluctuating backwater area is complex, which causes river protection engineering to lack a theoretical basis. The changing trend of daily water level in the fluctuating backwater area of the Three Gorges Reservoir (Cuntan hydrological station) was calculated, based on the relationship between daily discharge and water level, and the flow duration curve method. From 2002 to 2021, the daily water level processes had a distinct plateau stage after the flood season since 2008. The water level processes were composed of two parts, including the natural period (2002–2008) and the response period (2009–2021). The average daily discharge increased from 10214.93 m<sup>3</sup>/s to 10893.38 m<sup>3</sup>/s, and the average water level increased from 163.87 m to 169.03 m since 2008. The coefficient parameter of the relationship between daily discharge and water level decreased from 0.041 to 0.026, which indicates that the effect of daily discharge variation on the water level change was weakened. The maximum flood discharge and water depth increased by 29.82% and 27.21%, respectively, which led to a higher flood risk in the fluctuating backwater area. In this study, we proposed a novel approach to test trend change in the relationship between daily discharge and water level, which can be generalized to rivers influenced by human activities. Combining the trend test method and flow duration curve method, the characteristic daily discharge and water level can be calculated to guide engineering projects.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70096","citationCount":"0","resultStr":"{\"title\":\"Trend Analysis of Discharge and Water Level Changes in the Fluctuating Backwater Area\",\"authors\":\"Guoshuai Zhang,&nbsp;Qi Chen,&nbsp;Yisen Wang,&nbsp;Zhijing Li,&nbsp;Yinjun Zhou,&nbsp;Zhongwu Jin\",\"doi\":\"10.1111/jfr3.70096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Under the operation of the large reservoir, the variation law of water level in the fluctuating backwater area is complex, which causes river protection engineering to lack a theoretical basis. The changing trend of daily water level in the fluctuating backwater area of the Three Gorges Reservoir (Cuntan hydrological station) was calculated, based on the relationship between daily discharge and water level, and the flow duration curve method. From 2002 to 2021, the daily water level processes had a distinct plateau stage after the flood season since 2008. The water level processes were composed of two parts, including the natural period (2002–2008) and the response period (2009–2021). The average daily discharge increased from 10214.93 m<sup>3</sup>/s to 10893.38 m<sup>3</sup>/s, and the average water level increased from 163.87 m to 169.03 m since 2008. The coefficient parameter of the relationship between daily discharge and water level decreased from 0.041 to 0.026, which indicates that the effect of daily discharge variation on the water level change was weakened. The maximum flood discharge and water depth increased by 29.82% and 27.21%, respectively, which led to a higher flood risk in the fluctuating backwater area. In this study, we proposed a novel approach to test trend change in the relationship between daily discharge and water level, which can be generalized to rivers influenced by human activities. Combining the trend test method and flow duration curve method, the characteristic daily discharge and water level can be calculated to guide engineering projects.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70096\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70096\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70096","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在大型水库运行下,波动回水区水位变化规律复杂,导致河道防护工程缺乏理论依据。基于日流量与水位的关系,运用历时曲线法,计算了三峡水库波动回水区(村滩水文站)日水位的变化趋势。2002 - 2021年,日水位过程在2008年以后的汛期后出现明显的高原期。水位过程由自然期(2002-2008年)和响应期(2009-2021年)两部分组成。平均日流量从2008年的10214.93 m3/s增加到10893.38 m3/s,平均水位从163.87 m增加到169.03 m。日流量与水位关系的系数从0.041减小到0.026,表明日流量变化对水位变化的影响减弱。最大洪流量和水深分别增加了29.82%和27.21%,波动回水区洪水风险较高。在本研究中,我们提出了一种新的方法来测试日流量与水位关系的趋势变化,该方法可以推广到受人类活动影响的河流。结合趋势试验法和流量持续曲线法,可以计算出特征日流量和水位,指导工程建设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Trend Analysis of Discharge and Water Level Changes in the Fluctuating Backwater Area

Trend Analysis of Discharge and Water Level Changes in the Fluctuating Backwater Area

Under the operation of the large reservoir, the variation law of water level in the fluctuating backwater area is complex, which causes river protection engineering to lack a theoretical basis. The changing trend of daily water level in the fluctuating backwater area of the Three Gorges Reservoir (Cuntan hydrological station) was calculated, based on the relationship between daily discharge and water level, and the flow duration curve method. From 2002 to 2021, the daily water level processes had a distinct plateau stage after the flood season since 2008. The water level processes were composed of two parts, including the natural period (2002–2008) and the response period (2009–2021). The average daily discharge increased from 10214.93 m3/s to 10893.38 m3/s, and the average water level increased from 163.87 m to 169.03 m since 2008. The coefficient parameter of the relationship between daily discharge and water level decreased from 0.041 to 0.026, which indicates that the effect of daily discharge variation on the water level change was weakened. The maximum flood discharge and water depth increased by 29.82% and 27.21%, respectively, which led to a higher flood risk in the fluctuating backwater area. In this study, we proposed a novel approach to test trend change in the relationship between daily discharge and water level, which can be generalized to rivers influenced by human activities. Combining the trend test method and flow duration curve method, the characteristic daily discharge and water level can be calculated to guide engineering projects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信