基于三周期最小表面的多孔种植体结构优化设计。

Songqing Chen, Xiaoying Liu, Chenjian Liao, Xiangzhen Chen, Huicai Lai, Jiancheng Lv
{"title":"基于三周期最小表面的多孔种植体结构优化设计。","authors":"Songqing Chen, Xiaoying Liu, Chenjian Liao, Xiangzhen Chen, Huicai Lai, Jiancheng Lv","doi":"10.1515/bmt-2025-0159","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to optimize the design of porous dental implants using triply periodic minimal surfaces (TPMS) to address stress shielding caused by elastic modulus mismatch between titanium implants and bone tissue, while enhancing osseointegration through controlled porosity.</p><p><strong>Methods: </strong>Two TPMS architectures (D-type and G-type) were modeled via MathMod and Rhino software, with porosity controlled by parameter t. Finite element analysis (FEA) evaluated mechanical properties under porosities of 40 %, 60 %, and 80 %, and stress distribution in a patient-specific mandibular model under 200 N masticatory load.</p><p><strong>Results: </strong>Both D- and G-type structures met mechanical requirements at ≤60 % porosity. The D-type exhibited optimal stress transfer at 60 % porosity, whereas G-type at 80 % porosity exceeded yield strength due to thin walls. Porous designs reduced cortical-cancellous bone stress differences by 30-50 %, mitigating stress shielding. The interconnected network facilitated bone ingrowth.</p><p><strong>Conclusions: </strong>TPMS-based porous implants with 40-60 % porosity balance mechanical strength and stress distribution, offering personalized solutions for bone quality adaptation. Future work should validate long-term stability through <i>in vitro</i> experiments.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized design of porous dental implant structures based on triply periodic minimal surface (TPMS).\",\"authors\":\"Songqing Chen, Xiaoying Liu, Chenjian Liao, Xiangzhen Chen, Huicai Lai, Jiancheng Lv\",\"doi\":\"10.1515/bmt-2025-0159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aims to optimize the design of porous dental implants using triply periodic minimal surfaces (TPMS) to address stress shielding caused by elastic modulus mismatch between titanium implants and bone tissue, while enhancing osseointegration through controlled porosity.</p><p><strong>Methods: </strong>Two TPMS architectures (D-type and G-type) were modeled via MathMod and Rhino software, with porosity controlled by parameter t. Finite element analysis (FEA) evaluated mechanical properties under porosities of 40 %, 60 %, and 80 %, and stress distribution in a patient-specific mandibular model under 200 N masticatory load.</p><p><strong>Results: </strong>Both D- and G-type structures met mechanical requirements at ≤60 % porosity. The D-type exhibited optimal stress transfer at 60 % porosity, whereas G-type at 80 % porosity exceeded yield strength due to thin walls. Porous designs reduced cortical-cancellous bone stress differences by 30-50 %, mitigating stress shielding. The interconnected network facilitated bone ingrowth.</p><p><strong>Conclusions: </strong>TPMS-based porous implants with 40-60 % porosity balance mechanical strength and stress distribution, offering personalized solutions for bone quality adaptation. Future work should validate long-term stability through <i>in vitro</i> experiments.</p>\",\"PeriodicalId\":93905,\"journal\":{\"name\":\"Biomedizinische Technik. Biomedical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedizinische Technik. Biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2025-0159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2025-0159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用三周期最小表面(tritriperiodic minimal surfaces, TPMS)优化多孔种植体的设计,解决钛种植体与骨组织弹性模量不匹配导致的应力屏蔽问题,同时通过控制孔隙度来促进骨整合。方法:采用MathMod和Rhino软件对两种TPMS结构(d型和g型)进行建模,孔隙率由参数t控制。有限元分析(FEA)评估孔隙率为40 %、60 %和80 %时的力学性能,以及200 N咀嚼载荷下患者特异性下颌模型的应力分布。结果:D型和g型结构在孔隙率≤60 %时均满足力学要求。d型在孔隙度为60% %时表现出最佳的应力传递,而g型在孔隙度为80% %时由于壁薄而超过屈服强度。多孔设计将皮质-松质骨应力差异降低了30- 50% %,减轻了应力屏蔽。相互连接的网络促进了骨的长入。结论:40-60 %孔隙率的tpms多孔种植体可以平衡机械强度和应力分布,为骨质量适应提供个性化解决方案。未来的工作应通过体外实验验证其长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized design of porous dental implant structures based on triply periodic minimal surface (TPMS).

Objectives: This study aims to optimize the design of porous dental implants using triply periodic minimal surfaces (TPMS) to address stress shielding caused by elastic modulus mismatch between titanium implants and bone tissue, while enhancing osseointegration through controlled porosity.

Methods: Two TPMS architectures (D-type and G-type) were modeled via MathMod and Rhino software, with porosity controlled by parameter t. Finite element analysis (FEA) evaluated mechanical properties under porosities of 40 %, 60 %, and 80 %, and stress distribution in a patient-specific mandibular model under 200 N masticatory load.

Results: Both D- and G-type structures met mechanical requirements at ≤60 % porosity. The D-type exhibited optimal stress transfer at 60 % porosity, whereas G-type at 80 % porosity exceeded yield strength due to thin walls. Porous designs reduced cortical-cancellous bone stress differences by 30-50 %, mitigating stress shielding. The interconnected network facilitated bone ingrowth.

Conclusions: TPMS-based porous implants with 40-60 % porosity balance mechanical strength and stress distribution, offering personalized solutions for bone quality adaptation. Future work should validate long-term stability through in vitro experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信