使用预测模型确定移植资格。

IF 1.6 Q2 SURGERY
Current Transplantation Reports Pub Date : 2024-12-01 Epub Date: 2024-10-08 DOI:10.1007/s40472-024-00454-4
Samuel I Berchuck, Nrupen Bhavsar, Tyler Schappe, Hamed Zaribafzadeh, Roland Matsouaka, Lisa M McElroy
{"title":"使用预测模型确定移植资格。","authors":"Samuel I Berchuck, Nrupen Bhavsar, Tyler Schappe, Hamed Zaribafzadeh, Roland Matsouaka, Lisa M McElroy","doi":"10.1007/s40472-024-00454-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>This paper summarizes predictive models developed to determine transplant eligibility over the past 5 years, focusing on application of novel data sources and methodologic approaches.</p><p><strong>Recent findings: </strong>The contemporary body of research employing predictive models to inform transplant eligibility mainly relies on pre- or post-transplant patient survival. No studies have sought to assimilate all features collected during the transplant evaluation process to produce a composite prediction of post-transplant success or failure.</p><p><strong>Summary: </strong>Predictive modeling is a commonly used statistical technique that uses available data on a subset of a target population to estimate the current health state or the probability of developing a future health outcome among individuals in the target population. Modern analytic techniques allow for transformation of vast amounts of data into actionable information but require curated organized well-defined data to deploy. That data is currently lacking for patients referred for transplant.</p>","PeriodicalId":36387,"journal":{"name":"Current Transplantation Reports","volume":"11 4","pages":"243-250"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of Predictive Models to Determine Transplant Eligibility.\",\"authors\":\"Samuel I Berchuck, Nrupen Bhavsar, Tyler Schappe, Hamed Zaribafzadeh, Roland Matsouaka, Lisa M McElroy\",\"doi\":\"10.1007/s40472-024-00454-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>This paper summarizes predictive models developed to determine transplant eligibility over the past 5 years, focusing on application of novel data sources and methodologic approaches.</p><p><strong>Recent findings: </strong>The contemporary body of research employing predictive models to inform transplant eligibility mainly relies on pre- or post-transplant patient survival. No studies have sought to assimilate all features collected during the transplant evaluation process to produce a composite prediction of post-transplant success or failure.</p><p><strong>Summary: </strong>Predictive modeling is a commonly used statistical technique that uses available data on a subset of a target population to estimate the current health state or the probability of developing a future health outcome among individuals in the target population. Modern analytic techniques allow for transformation of vast amounts of data into actionable information but require curated organized well-defined data to deploy. That data is currently lacking for patients referred for transplant.</p>\",\"PeriodicalId\":36387,\"journal\":{\"name\":\"Current Transplantation Reports\",\"volume\":\"11 4\",\"pages\":\"243-250\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Transplantation Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40472-024-00454-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Transplantation Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40472-024-00454-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

综述目的:本文总结了过去5年来用于确定移植资格的预测模型,重点介绍了新数据源和方法方法的应用。最新发现:当代研究机构采用预测模型来告知移植资格主要依赖于移植前或移植后患者的生存。没有研究试图吸收在移植评估过程中收集的所有特征,以产生移植后成功或失败的综合预测。摘要:预测建模是一种常用的统计技术,它使用目标人群子集的可用数据来估计目标人群中个体的当前健康状态或发展未来健康结果的概率。现代分析技术允许将大量数据转换为可操作的信息,但需要精心组织、定义良好的数据来部署。目前还缺乏移植患者的相关数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Predictive Models to Determine Transplant Eligibility.

Purpose of review: This paper summarizes predictive models developed to determine transplant eligibility over the past 5 years, focusing on application of novel data sources and methodologic approaches.

Recent findings: The contemporary body of research employing predictive models to inform transplant eligibility mainly relies on pre- or post-transplant patient survival. No studies have sought to assimilate all features collected during the transplant evaluation process to produce a composite prediction of post-transplant success or failure.

Summary: Predictive modeling is a commonly used statistical technique that uses available data on a subset of a target population to estimate the current health state or the probability of developing a future health outcome among individuals in the target population. Modern analytic techniques allow for transformation of vast amounts of data into actionable information but require curated organized well-defined data to deploy. That data is currently lacking for patients referred for transplant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
4.80%
发文量
34
期刊介绍: Under the guidance of Dr. Dorry Segev, from Johns Hopkins, Current Transplantation Reports will provide an in-depth review of topics covering kidney, liver, and pancreatic transplantation in addition to immunology and composite allografts.We accomplish this aim by inviting international authorities to contribute review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists.  By providing clear, insightful balanced contributions, the journal intends to serve those involved in the field of transplantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信