{"title":"基于变压器模型、特征融合和集成学习的多阶段框架增强眼病分类。","authors":"Abdulaziz AlMohimeed","doi":"10.1038/s41598-025-16415-5","DOIUrl":null,"url":null,"abstract":"<p><p>Eye diseases can affect vision and well-being, so early, accurate diagnosis is crucial to prevent serious impairment. Deep learning models have shown promise for automating the diagnosis of eye diseases from images. However, current methods mostly use single-model architectures, including convolutional neural networks (CNNs), which might not adequately capture the long-range spatial correlations and local fine-grained features required for classification. To address these limitations, this study proposes a multi-stage framework for eye diseases (MST-EDS), including two stages: hybrid and stacking models in the categorization of eye illnesses across four classes: normal, diabetic_retinopathy, glaucoma, and cataract, utilizing a benchmark dataset from Kaggle. Hybrid models are developed based on Transformer models: Vision Transformer (ViT), Data-efficient Image Transformer (DeiT), and Swin Transformer are used to extract deep features from images, Principal Component Analysis (PCA) is used to reduce the complexity of extracted features, and Machine Learning (ML) models are used as classifiers to enhance performance. In the stacking model, the outputs of the best hybrid models are stacked, and they are used to train and evaluate meta-learners to improve classification performance. The experimental results show that the MST-EDS-RF model recorded the best performance compared to individual Transformer and hybrid models, with 97.163% accuracy.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30469"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365307/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-stage framework using transformer models, feature fusion and ensemble learning for enhancing eye disease classification.\",\"authors\":\"Abdulaziz AlMohimeed\",\"doi\":\"10.1038/s41598-025-16415-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eye diseases can affect vision and well-being, so early, accurate diagnosis is crucial to prevent serious impairment. Deep learning models have shown promise for automating the diagnosis of eye diseases from images. However, current methods mostly use single-model architectures, including convolutional neural networks (CNNs), which might not adequately capture the long-range spatial correlations and local fine-grained features required for classification. To address these limitations, this study proposes a multi-stage framework for eye diseases (MST-EDS), including two stages: hybrid and stacking models in the categorization of eye illnesses across four classes: normal, diabetic_retinopathy, glaucoma, and cataract, utilizing a benchmark dataset from Kaggle. Hybrid models are developed based on Transformer models: Vision Transformer (ViT), Data-efficient Image Transformer (DeiT), and Swin Transformer are used to extract deep features from images, Principal Component Analysis (PCA) is used to reduce the complexity of extracted features, and Machine Learning (ML) models are used as classifiers to enhance performance. In the stacking model, the outputs of the best hybrid models are stacked, and they are used to train and evaluate meta-learners to improve classification performance. The experimental results show that the MST-EDS-RF model recorded the best performance compared to individual Transformer and hybrid models, with 97.163% accuracy.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"30469\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365307/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-16415-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-16415-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Multi-stage framework using transformer models, feature fusion and ensemble learning for enhancing eye disease classification.
Eye diseases can affect vision and well-being, so early, accurate diagnosis is crucial to prevent serious impairment. Deep learning models have shown promise for automating the diagnosis of eye diseases from images. However, current methods mostly use single-model architectures, including convolutional neural networks (CNNs), which might not adequately capture the long-range spatial correlations and local fine-grained features required for classification. To address these limitations, this study proposes a multi-stage framework for eye diseases (MST-EDS), including two stages: hybrid and stacking models in the categorization of eye illnesses across four classes: normal, diabetic_retinopathy, glaucoma, and cataract, utilizing a benchmark dataset from Kaggle. Hybrid models are developed based on Transformer models: Vision Transformer (ViT), Data-efficient Image Transformer (DeiT), and Swin Transformer are used to extract deep features from images, Principal Component Analysis (PCA) is used to reduce the complexity of extracted features, and Machine Learning (ML) models are used as classifiers to enhance performance. In the stacking model, the outputs of the best hybrid models are stacked, and they are used to train and evaluate meta-learners to improve classification performance. The experimental results show that the MST-EDS-RF model recorded the best performance compared to individual Transformer and hybrid models, with 97.163% accuracy.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.