{"title":"整合miRNA分析和机器学习以改善前列腺癌诊断。","authors":"Shweta Singh, Abhay Kumar Pathak, Sukhad Kural, Lalit Kumar, Madan Gopal Bhardwaj, Mahima Yadav, Sameer Trivedi, Parimal Das, Manjari Gupta, Garima Jain","doi":"10.1038/s41598-025-99754-7","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) diagnosis remains challenging due to overlapping clinical features with benign prostatic hyperplasia (BPH) and limitations of existing diagnostic tools like PSA tests, which yield high false-positive rates. This study investigates the potential of microRNA (miRNA) biomarkers, analyzed via reverse transcription polymerase chain reaction and machine learning (ML), to enhance diagnostic accuracy. miRNAs such as miR-21-5p, miR-141-3p, and miR-221-3p were identified as significant discriminators between PCa and BPH through a prospective cohort study. Whole blood miRNA profiling offered a robust systemic representation of disease states. A random forest ML model was trained on expression data, achieving notable performance metrics: an accuracy of 77.42%, AUC of 0.78 during verification, and 74.07% accuracy and 0.75 AUC in validation. The model's use of miRNA expression ratios, such as miR-141-3p/miR-221-3p, demonstrated superior sensitivity and specificity over traditional PSA testing. Bioinformatics analysis confirmed the association of selected miRNAs with cancer pathways, including PD-L1/PD-1 checkpoint and androgen receptor signaling, validating the biological relevance of the findings. This novel integration of miRNA profiling and machine learning holds great potential for the clinical translation of miRNA-based non-invasive diagnostics, enhancing diagnostic precision. However, broader population studies and standardization of protocols are needed to ensure scalability and clinical applicability. This research provides a foundational framework for advancing miRNA-based diagnostics, bridging discovery and clinical implementation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30477"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating miRNA profiling and machine learning for improved prostate cancer diagnosis.\",\"authors\":\"Shweta Singh, Abhay Kumar Pathak, Sukhad Kural, Lalit Kumar, Madan Gopal Bhardwaj, Mahima Yadav, Sameer Trivedi, Parimal Das, Manjari Gupta, Garima Jain\",\"doi\":\"10.1038/s41598-025-99754-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer (PCa) diagnosis remains challenging due to overlapping clinical features with benign prostatic hyperplasia (BPH) and limitations of existing diagnostic tools like PSA tests, which yield high false-positive rates. This study investigates the potential of microRNA (miRNA) biomarkers, analyzed via reverse transcription polymerase chain reaction and machine learning (ML), to enhance diagnostic accuracy. miRNAs such as miR-21-5p, miR-141-3p, and miR-221-3p were identified as significant discriminators between PCa and BPH through a prospective cohort study. Whole blood miRNA profiling offered a robust systemic representation of disease states. A random forest ML model was trained on expression data, achieving notable performance metrics: an accuracy of 77.42%, AUC of 0.78 during verification, and 74.07% accuracy and 0.75 AUC in validation. The model's use of miRNA expression ratios, such as miR-141-3p/miR-221-3p, demonstrated superior sensitivity and specificity over traditional PSA testing. Bioinformatics analysis confirmed the association of selected miRNAs with cancer pathways, including PD-L1/PD-1 checkpoint and androgen receptor signaling, validating the biological relevance of the findings. This novel integration of miRNA profiling and machine learning holds great potential for the clinical translation of miRNA-based non-invasive diagnostics, enhancing diagnostic precision. However, broader population studies and standardization of protocols are needed to ensure scalability and clinical applicability. This research provides a foundational framework for advancing miRNA-based diagnostics, bridging discovery and clinical implementation.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"30477\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-99754-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-99754-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Integrating miRNA profiling and machine learning for improved prostate cancer diagnosis.
Prostate cancer (PCa) diagnosis remains challenging due to overlapping clinical features with benign prostatic hyperplasia (BPH) and limitations of existing diagnostic tools like PSA tests, which yield high false-positive rates. This study investigates the potential of microRNA (miRNA) biomarkers, analyzed via reverse transcription polymerase chain reaction and machine learning (ML), to enhance diagnostic accuracy. miRNAs such as miR-21-5p, miR-141-3p, and miR-221-3p were identified as significant discriminators between PCa and BPH through a prospective cohort study. Whole blood miRNA profiling offered a robust systemic representation of disease states. A random forest ML model was trained on expression data, achieving notable performance metrics: an accuracy of 77.42%, AUC of 0.78 during verification, and 74.07% accuracy and 0.75 AUC in validation. The model's use of miRNA expression ratios, such as miR-141-3p/miR-221-3p, demonstrated superior sensitivity and specificity over traditional PSA testing. Bioinformatics analysis confirmed the association of selected miRNAs with cancer pathways, including PD-L1/PD-1 checkpoint and androgen receptor signaling, validating the biological relevance of the findings. This novel integration of miRNA profiling and machine learning holds great potential for the clinical translation of miRNA-based non-invasive diagnostics, enhancing diagnostic precision. However, broader population studies and standardization of protocols are needed to ensure scalability and clinical applicability. This research provides a foundational framework for advancing miRNA-based diagnostics, bridging discovery and clinical implementation.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.