一个尖端的集成模型,增强水下图像恢复和质量提高。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
A Sarala, C Vinoth Kumar
{"title":"一个尖端的集成模型,增强水下图像恢复和质量提高。","authors":"A Sarala, C Vinoth Kumar","doi":"10.1038/s41598-025-96832-8","DOIUrl":null,"url":null,"abstract":"<p><p>Underwater image enhancement poses unique challenges due to poor visibility, color distortion, and haze caused by light absorption and scattering in water. In this paper, we propose an ensemble model, Ensemble Pyramid-based Convolutional Neural Network and Deep Channel Prior Dehazing Network (EPCNN-DCPDN), which combines Pyramid-based Convolutional Neural Networks (CNNs) and the Deep Channel Prior Dehazing Network (DCPDN) to address these challenges. The model operates in two ways: sequentially, by first applying DCPDN for haze removal followed by Pyramid-based CNNs for multi-scale feature refinement, or in parallel, with outputs from both models fused using a weighted average or learned fusion mechanism. We evaluated the proposed model on multiple underwater datasets and compared its performance against nine state-of-the-art models, including CLAHE, FUnIE-GAN, WaterGAN, and Haze-Line Prior Model. The EPCNN-DCPDN model achieved superior results with a PSNR of 28.34 dB, SSIM of 0.902, and UIQM of 3.56. It also demonstrated outstanding accuracy in challenging underwater conditions, with an accuracy of 97.92% on shallow, deep, and low-light underwater datasets, outperforming existing models such as WaterGAN and Haze-Line Prior Model. The results highlight the effectiveness of the proposed model in restoring color, contrast, and fine details in underwater images. The model's ability to handle a wide range of underwater conditions makes it an ideal solution for applications in underwater exploration, marine research, and object detection.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30480"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365059/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cutting-edge ensemble model for enhanced underwater image restoration and quality improvement.\",\"authors\":\"A Sarala, C Vinoth Kumar\",\"doi\":\"10.1038/s41598-025-96832-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Underwater image enhancement poses unique challenges due to poor visibility, color distortion, and haze caused by light absorption and scattering in water. In this paper, we propose an ensemble model, Ensemble Pyramid-based Convolutional Neural Network and Deep Channel Prior Dehazing Network (EPCNN-DCPDN), which combines Pyramid-based Convolutional Neural Networks (CNNs) and the Deep Channel Prior Dehazing Network (DCPDN) to address these challenges. The model operates in two ways: sequentially, by first applying DCPDN for haze removal followed by Pyramid-based CNNs for multi-scale feature refinement, or in parallel, with outputs from both models fused using a weighted average or learned fusion mechanism. We evaluated the proposed model on multiple underwater datasets and compared its performance against nine state-of-the-art models, including CLAHE, FUnIE-GAN, WaterGAN, and Haze-Line Prior Model. The EPCNN-DCPDN model achieved superior results with a PSNR of 28.34 dB, SSIM of 0.902, and UIQM of 3.56. It also demonstrated outstanding accuracy in challenging underwater conditions, with an accuracy of 97.92% on shallow, deep, and low-light underwater datasets, outperforming existing models such as WaterGAN and Haze-Line Prior Model. The results highlight the effectiveness of the proposed model in restoring color, contrast, and fine details in underwater images. The model's ability to handle a wide range of underwater conditions makes it an ideal solution for applications in underwater exploration, marine research, and object detection.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"30480\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-96832-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-96832-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水下图像增强面临着独特的挑战,因为水中的光吸收和散射导致能见度低、颜色失真和雾霾。在本文中,我们提出了一个集成模型,基于金字塔的集成卷积神经网络和深度通道先验去雾网络(EPCNN-DCPDN),它结合了基于金字塔的卷积神经网络(cnn)和深度通道先验去雾网络(DCPDN)来解决这些挑战。该模型以两种方式运行:顺序地,首先应用DCPDN去除雾霾,然后使用基于金字塔的cnn进行多尺度特征细化,或者并行地,使用加权平均或学习融合机制融合两个模型的输出。我们在多个水下数据集上评估了所提出的模型,并将其与9个最先进的模型(包括CLAHE、FUnIE-GAN、WaterGAN和Haze-Line Prior model)进行了性能比较。EPCNN-DCPDN模型取得了较好的结果,PSNR为28.34 dB, SSIM为0.902,UIQM为3.56。在具有挑战性的水下条件下,它也表现出了出色的准确性,在浅、深和低光水下数据集上的准确率达到97.92%,优于现有的模型,如WaterGAN和Haze-Line Prior Model。结果突出了该模型在恢复水下图像的色彩、对比度和精细细节方面的有效性。该模型处理各种水下条件的能力使其成为水下勘探,海洋研究和目标检测应用的理想解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A cutting-edge ensemble model for enhanced underwater image restoration and quality improvement.

A cutting-edge ensemble model for enhanced underwater image restoration and quality improvement.

A cutting-edge ensemble model for enhanced underwater image restoration and quality improvement.

A cutting-edge ensemble model for enhanced underwater image restoration and quality improvement.

Underwater image enhancement poses unique challenges due to poor visibility, color distortion, and haze caused by light absorption and scattering in water. In this paper, we propose an ensemble model, Ensemble Pyramid-based Convolutional Neural Network and Deep Channel Prior Dehazing Network (EPCNN-DCPDN), which combines Pyramid-based Convolutional Neural Networks (CNNs) and the Deep Channel Prior Dehazing Network (DCPDN) to address these challenges. The model operates in two ways: sequentially, by first applying DCPDN for haze removal followed by Pyramid-based CNNs for multi-scale feature refinement, or in parallel, with outputs from both models fused using a weighted average or learned fusion mechanism. We evaluated the proposed model on multiple underwater datasets and compared its performance against nine state-of-the-art models, including CLAHE, FUnIE-GAN, WaterGAN, and Haze-Line Prior Model. The EPCNN-DCPDN model achieved superior results with a PSNR of 28.34 dB, SSIM of 0.902, and UIQM of 3.56. It also demonstrated outstanding accuracy in challenging underwater conditions, with an accuracy of 97.92% on shallow, deep, and low-light underwater datasets, outperforming existing models such as WaterGAN and Haze-Line Prior Model. The results highlight the effectiveness of the proposed model in restoring color, contrast, and fine details in underwater images. The model's ability to handle a wide range of underwater conditions makes it an ideal solution for applications in underwater exploration, marine research, and object detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信