利用观测信息深度学习预测ENSO。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuchao Zhu, Rong-Hua Zhang, Fan Wang, Wenju Cai, Delei Li, Shoude Guan, Yuanlong Li
{"title":"利用观测信息深度学习预测ENSO。","authors":"Yuchao Zhu, Rong-Hua Zhang, Fan Wang, Wenju Cai, Delei Li, Shoude Guan, Yuanlong Li","doi":"10.1038/s41467-025-63157-z","DOIUrl":null,"url":null,"abstract":"<p><p>The El Niño-Southern Oscillation (ENSO) profoundly impacts global climate, but its sea surface temperature (SST) variability projected by climate models remains uncertain, with a substantial inter-model spread in 21st-century projections. Model-observation discrepancies in ENSO physics contribute to this uncertainty, necessitating observational constraints to refine projections. However, methods to achieve this constraint remain unclear. Here, we show that deep learning informed by the observed response of ENSO SST variability to tropical Pacific warming patterns reduces projection uncertainty by 54% under a high-emission scenario. Specifically, artificial neural networks (ANNs), trained on climate model simulations and observations, successfully capture the real-world ENSO response. Interpretability analyses reveal that replicating observed ENSO physics by ANNs is critical, identifying warming in the far-eastern and central equatorial Pacific as key to ENSO change. A model-as-truth approach further confirms the robustness of ANN-generated projections. By conditioning future ENSO SST variability projection on the ANN-inferred ENSO response to tropical Pacific warming, uncertainty is reduced from a range of 0.59 °C to 0.27 °C. Our results highlight the prospect of integrating machine learning with observations to reduce uncertainty in climate projections.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"7736"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365254/pdf/","citationCount":"0","resultStr":"{\"title\":\"Projection of ENSO using observation-informed deep learning.\",\"authors\":\"Yuchao Zhu, Rong-Hua Zhang, Fan Wang, Wenju Cai, Delei Li, Shoude Guan, Yuanlong Li\",\"doi\":\"10.1038/s41467-025-63157-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The El Niño-Southern Oscillation (ENSO) profoundly impacts global climate, but its sea surface temperature (SST) variability projected by climate models remains uncertain, with a substantial inter-model spread in 21st-century projections. Model-observation discrepancies in ENSO physics contribute to this uncertainty, necessitating observational constraints to refine projections. However, methods to achieve this constraint remain unclear. Here, we show that deep learning informed by the observed response of ENSO SST variability to tropical Pacific warming patterns reduces projection uncertainty by 54% under a high-emission scenario. Specifically, artificial neural networks (ANNs), trained on climate model simulations and observations, successfully capture the real-world ENSO response. Interpretability analyses reveal that replicating observed ENSO physics by ANNs is critical, identifying warming in the far-eastern and central equatorial Pacific as key to ENSO change. A model-as-truth approach further confirms the robustness of ANN-generated projections. By conditioning future ENSO SST variability projection on the ANN-inferred ENSO response to tropical Pacific warming, uncertainty is reduced from a range of 0.59 °C to 0.27 °C. Our results highlight the prospect of integrating machine learning with observations to reduce uncertainty in climate projections.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"7736\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365254/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63157-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63157-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

El Niño-Southern涛动(ENSO)对全球气候产生了深远的影响,但气候模式预估的海表温度(SST)变率仍然不确定,在21世纪的预估中存在较大的模式间差异。ENSO物理中模式与观测的差异造成了这种不确定性,需要观测约束来改进预估。然而,实现这一约束的方法仍然不清楚。在高排放情景下,根据观测到的ENSO海温变率对热带太平洋变暖型的响应进行深度学习,可将预估不确定性降低54%。具体来说,经过气候模式模拟和观测训练的人工神经网络(ann)成功地捕获了真实世界的ENSO响应。可解释性分析表明,通过人工神经网络复制观测到的ENSO物理是至关重要的,确定赤道太平洋远东和中部的变暖是ENSO变化的关键。模型即真理的方法进一步证实了人工神经网络生成预测的鲁棒性。通过将未来ENSO海温变率预估调整到ann推断的ENSO对热带太平洋变暖的响应,不确定性从0.59°C减少到0.27°C。我们的研究结果强调了将机器学习与观测相结合以减少气候预测不确定性的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projection of ENSO using observation-informed deep learning.

The El Niño-Southern Oscillation (ENSO) profoundly impacts global climate, but its sea surface temperature (SST) variability projected by climate models remains uncertain, with a substantial inter-model spread in 21st-century projections. Model-observation discrepancies in ENSO physics contribute to this uncertainty, necessitating observational constraints to refine projections. However, methods to achieve this constraint remain unclear. Here, we show that deep learning informed by the observed response of ENSO SST variability to tropical Pacific warming patterns reduces projection uncertainty by 54% under a high-emission scenario. Specifically, artificial neural networks (ANNs), trained on climate model simulations and observations, successfully capture the real-world ENSO response. Interpretability analyses reveal that replicating observed ENSO physics by ANNs is critical, identifying warming in the far-eastern and central equatorial Pacific as key to ENSO change. A model-as-truth approach further confirms the robustness of ANN-generated projections. By conditioning future ENSO SST variability projection on the ANN-inferred ENSO response to tropical Pacific warming, uncertainty is reduced from a range of 0.59 °C to 0.27 °C. Our results highlight the prospect of integrating machine learning with observations to reduce uncertainty in climate projections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信