通过Minkowski和多重分形形式揭示疟疾病媒翅膀的纳米形态结构。

IF 3 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Glenda Quaresma Ramos, Leandro Caio Correa Pinto, Robert Saraiva Matos, Carlos Alberto Rodrigues Costa, Stefanie Costa Pinto Lopes, Rosa Amélia Gonçalves Santana, Silvia Cássia Brandão Justiniano, Kildare Rocha de Miranda, Henrique Duarte da Fonseca Filho
{"title":"通过Minkowski和多重分形形式揭示疟疾病媒翅膀的纳米形态结构。","authors":"Glenda Quaresma Ramos, Leandro Caio Correa Pinto, Robert Saraiva Matos, Carlos Alberto Rodrigues Costa, Stefanie Costa Pinto Lopes, Rosa Amélia Gonçalves Santana, Silvia Cássia Brandão Justiniano, Kildare Rocha de Miranda, Henrique Duarte da Fonseca Filho","doi":"10.1093/mam/ozaf071","DOIUrl":null,"url":null,"abstract":"<p><p>Deciphering the nanoscale architecture of mosquito wings is crucial for understanding species-specific flight adaptations and vectorial behaviors. In this study, we present a comprehensive quantitative analysis of the wing surface morphology of Anopheles darlingi and Anopheles aquasalis. By integrating high-resolution microscopy with Minkowski functionals and multifractal formalism, we reveal pronounced interspecific and dorso-ventral asymmetries in mosquito wing surfaces at both micro- and nanoscales. Atomic force microscopic topographies revealed distinct differences in dorsal versus ventral surface roughness, with An. aquasalis displaying higher elevation variance and denser nanomorphological heterogeneity. Minkowski volume and boundary descriptors showed slower decay and broader distribution for An. aquasalis, especially on its dorsal side, indicative of complex topographic relief. Multifractal spectra, derived from the box-counting method across q = -10 to +10, exhibited larger width (Δα ≈ 1.073) and stronger left-symmetry (H ≈ -0.852) in An. aquasalis, compared to narrower and more symmetric spectra in An. darlingi (Δα ≈ 1.009; H ≈ -0.532). Generalized fractal dimensions (D0 ≈ 2.00; D2 range: 1.951-1.982) and singularity spectra asymmetry (Δf up to -1.732) further differentiated species and wing sides. These multiscale descriptors demonstrate that An. aquasalis, particularly its ventral surface, harbors higher degrees of nanomorphological complexity and textural irregularity.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":"31 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Nanomorphological Architecture of Malaria Vectors' Wings via Minkowski and Multifractal Formalisms.\",\"authors\":\"Glenda Quaresma Ramos, Leandro Caio Correa Pinto, Robert Saraiva Matos, Carlos Alberto Rodrigues Costa, Stefanie Costa Pinto Lopes, Rosa Amélia Gonçalves Santana, Silvia Cássia Brandão Justiniano, Kildare Rocha de Miranda, Henrique Duarte da Fonseca Filho\",\"doi\":\"10.1093/mam/ozaf071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deciphering the nanoscale architecture of mosquito wings is crucial for understanding species-specific flight adaptations and vectorial behaviors. In this study, we present a comprehensive quantitative analysis of the wing surface morphology of Anopheles darlingi and Anopheles aquasalis. By integrating high-resolution microscopy with Minkowski functionals and multifractal formalism, we reveal pronounced interspecific and dorso-ventral asymmetries in mosquito wing surfaces at both micro- and nanoscales. Atomic force microscopic topographies revealed distinct differences in dorsal versus ventral surface roughness, with An. aquasalis displaying higher elevation variance and denser nanomorphological heterogeneity. Minkowski volume and boundary descriptors showed slower decay and broader distribution for An. aquasalis, especially on its dorsal side, indicative of complex topographic relief. Multifractal spectra, derived from the box-counting method across q = -10 to +10, exhibited larger width (Δα ≈ 1.073) and stronger left-symmetry (H ≈ -0.852) in An. aquasalis, compared to narrower and more symmetric spectra in An. darlingi (Δα ≈ 1.009; H ≈ -0.532). Generalized fractal dimensions (D0 ≈ 2.00; D2 range: 1.951-1.982) and singularity spectra asymmetry (Δf up to -1.732) further differentiated species and wing sides. These multiscale descriptors demonstrate that An. aquasalis, particularly its ventral surface, harbors higher degrees of nanomorphological complexity and textural irregularity.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":\"31 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozaf071\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozaf071","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

破译蚊子翅膀的纳米结构对于理解物种特异性飞行适应和媒介行为至关重要。在这项研究中,我们对达林按蚊和水按蚊的翅膀表面形态进行了全面的定量分析。通过将高分辨率显微镜与闵可夫斯基泛函数和多重分形形式相结合,我们在微观和纳米尺度上揭示了蚊子翅膀表面明显的种间和背腹不对称。原子力显微形貌揭示了背侧和腹侧表面粗糙度的明显差异。水藻具有较高的海拔变异和致密的纳米形态异质性。An的Minkowski体积和边界描述子衰减较慢,分布较广。海岬,特别是其背面,表明地形起伏复杂。在q = -10 ~ +10区间用盒计数法得到的多重分形谱显示出较大的宽度(Δα≈1.073)和较强的左对称性(H≈-0.852)。与An中更窄和更对称的光谱相比,aquasalis。darlingi (Δα≈1.009;H≈-0.532)。广义分形维数(D0≈2.00;D2范围:1.951-1.982)和奇异谱不对称性(Δf达-1.732)进一步区分了物种和翼面。这些多尺度描述符证明了An。Aquasalis,特别是其腹侧表面,具有更高程度的纳米形态复杂性和纹理不规则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Nanomorphological Architecture of Malaria Vectors' Wings via Minkowski and Multifractal Formalisms.

Deciphering the nanoscale architecture of mosquito wings is crucial for understanding species-specific flight adaptations and vectorial behaviors. In this study, we present a comprehensive quantitative analysis of the wing surface morphology of Anopheles darlingi and Anopheles aquasalis. By integrating high-resolution microscopy with Minkowski functionals and multifractal formalism, we reveal pronounced interspecific and dorso-ventral asymmetries in mosquito wing surfaces at both micro- and nanoscales. Atomic force microscopic topographies revealed distinct differences in dorsal versus ventral surface roughness, with An. aquasalis displaying higher elevation variance and denser nanomorphological heterogeneity. Minkowski volume and boundary descriptors showed slower decay and broader distribution for An. aquasalis, especially on its dorsal side, indicative of complex topographic relief. Multifractal spectra, derived from the box-counting method across q = -10 to +10, exhibited larger width (Δα ≈ 1.073) and stronger left-symmetry (H ≈ -0.852) in An. aquasalis, compared to narrower and more symmetric spectra in An. darlingi (Δα ≈ 1.009; H ≈ -0.532). Generalized fractal dimensions (D0 ≈ 2.00; D2 range: 1.951-1.982) and singularity spectra asymmetry (Δf up to -1.732) further differentiated species and wing sides. These multiscale descriptors demonstrate that An. aquasalis, particularly its ventral surface, harbors higher degrees of nanomorphological complexity and textural irregularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信