Katja Schwartz, Margie Kinnersley, Charles Ross Lindsey, Gavin Sherlock, Frank Rosenzweig
{"title":"适应性遗传学揭示了在持续的营养限制下,大肠杆菌进化对蛋白质结构/功能的限制。","authors":"Katja Schwartz, Margie Kinnersley, Charles Ross Lindsey, Gavin Sherlock, Frank Rosenzweig","doi":"10.1186/s12915-025-02331-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Evolution of microbes under laboratory selection produces genetically diverse populations, owing to the continuous input of mutations and to competition among lineages. Whole-genome whole-population sequencing makes it possible to identify mutations arising in such populations, to use them to discern functional modules where adaptation occurs, and then map gene structure-function relationships. Here, we report on the use of this approach, adaptive genetics, to discover targets of selection and the mutational consequences thereof in E. coli evolving under chronic nutrient limitation.</p><p><strong>Results: </strong>Replicate bacterial populations were cultured for ≥ 300 generations in glucose limited chemostats and sequenced every 50 generations at 1000X-coverage, enabling identification of mutations that rose to ≥ 1% frequency. Thirty-nine genes qualified as high value targets of selection, being mutated far more often than would be expected by chance. A majority of these encode regulatory proteins that control gene expression at the transcriptional (e.g., RpoS and OmpR), post-transcriptional (e.g., Hfq and ProQ), and post-translational (e.g., GatZ) levels. The downstream effects of these regulatory mutations likely impact not only acquisition and processing of limiting glucose, but also assembly of structural elements such as lipopolysaccharide, periplasmic glucans, and cell surface appendages such as flagella and fimbriae. Whether regulatory or structural in nature, recurrent mutations at high value targets tend to cluster at sites either known or predicted to be involved in RNA-protein or protein-protein interactions.</p><p><strong>Conclusions: </strong>Our observations highlight the value of experimental evolution as a proving ground for inferences gathered from traditional molecular genetics. By coupling experimental evolution to whole-genome, whole-population sequencing, adaptive genetics makes it possible not only the genes whose mutation confers a selective advantage, but also to discover which residues in which genes are most likely to confer a particular type of selective advantage and why.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"261"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive genetics reveals constraints on protein structure/function by evolving E. coli under constant nutrient limitation.\",\"authors\":\"Katja Schwartz, Margie Kinnersley, Charles Ross Lindsey, Gavin Sherlock, Frank Rosenzweig\",\"doi\":\"10.1186/s12915-025-02331-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Evolution of microbes under laboratory selection produces genetically diverse populations, owing to the continuous input of mutations and to competition among lineages. Whole-genome whole-population sequencing makes it possible to identify mutations arising in such populations, to use them to discern functional modules where adaptation occurs, and then map gene structure-function relationships. Here, we report on the use of this approach, adaptive genetics, to discover targets of selection and the mutational consequences thereof in E. coli evolving under chronic nutrient limitation.</p><p><strong>Results: </strong>Replicate bacterial populations were cultured for ≥ 300 generations in glucose limited chemostats and sequenced every 50 generations at 1000X-coverage, enabling identification of mutations that rose to ≥ 1% frequency. Thirty-nine genes qualified as high value targets of selection, being mutated far more often than would be expected by chance. A majority of these encode regulatory proteins that control gene expression at the transcriptional (e.g., RpoS and OmpR), post-transcriptional (e.g., Hfq and ProQ), and post-translational (e.g., GatZ) levels. The downstream effects of these regulatory mutations likely impact not only acquisition and processing of limiting glucose, but also assembly of structural elements such as lipopolysaccharide, periplasmic glucans, and cell surface appendages such as flagella and fimbriae. Whether regulatory or structural in nature, recurrent mutations at high value targets tend to cluster at sites either known or predicted to be involved in RNA-protein or protein-protein interactions.</p><p><strong>Conclusions: </strong>Our observations highlight the value of experimental evolution as a proving ground for inferences gathered from traditional molecular genetics. By coupling experimental evolution to whole-genome, whole-population sequencing, adaptive genetics makes it possible not only the genes whose mutation confers a selective advantage, but also to discover which residues in which genes are most likely to confer a particular type of selective advantage and why.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"261\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02331-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02331-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Adaptive genetics reveals constraints on protein structure/function by evolving E. coli under constant nutrient limitation.
Background: Evolution of microbes under laboratory selection produces genetically diverse populations, owing to the continuous input of mutations and to competition among lineages. Whole-genome whole-population sequencing makes it possible to identify mutations arising in such populations, to use them to discern functional modules where adaptation occurs, and then map gene structure-function relationships. Here, we report on the use of this approach, adaptive genetics, to discover targets of selection and the mutational consequences thereof in E. coli evolving under chronic nutrient limitation.
Results: Replicate bacterial populations were cultured for ≥ 300 generations in glucose limited chemostats and sequenced every 50 generations at 1000X-coverage, enabling identification of mutations that rose to ≥ 1% frequency. Thirty-nine genes qualified as high value targets of selection, being mutated far more often than would be expected by chance. A majority of these encode regulatory proteins that control gene expression at the transcriptional (e.g., RpoS and OmpR), post-transcriptional (e.g., Hfq and ProQ), and post-translational (e.g., GatZ) levels. The downstream effects of these regulatory mutations likely impact not only acquisition and processing of limiting glucose, but also assembly of structural elements such as lipopolysaccharide, periplasmic glucans, and cell surface appendages such as flagella and fimbriae. Whether regulatory or structural in nature, recurrent mutations at high value targets tend to cluster at sites either known or predicted to be involved in RNA-protein or protein-protein interactions.
Conclusions: Our observations highlight the value of experimental evolution as a proving ground for inferences gathered from traditional molecular genetics. By coupling experimental evolution to whole-genome, whole-population sequencing, adaptive genetics makes it possible not only the genes whose mutation confers a selective advantage, but also to discover which residues in which genes are most likely to confer a particular type of selective advantage and why.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.