Frederick M Lang, Jianfei Liu, Kevin J Clerkin, Elissa A Driggin, Andrew J Einstein, Gabriel T Sayer, Koji Takeda, Nir Uriel, Ronald M Summers, Veli K Topkara
{"title":"使用全自动深度学习评估心肌减少症预测心脏移植受者的同种异体移植存活。","authors":"Frederick M Lang, Jianfei Liu, Kevin J Clerkin, Elissa A Driggin, Andrew J Einstein, Gabriel T Sayer, Koji Takeda, Nir Uriel, Ronald M Summers, Veli K Topkara","doi":"10.1161/CIRCHEARTFAILURE.125.012805","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is associated with adverse outcomes in patients with end-stage heart failure. Muscle mass can be quantified via manual segmentation of computed tomography images, but this approach is time-consuming and subject to interobserver variability. We sought to determine whether fully automated assessment of radiographic sarcopenia by deep learning would predict heart transplantation outcomes.</p><p><strong>Methods: </strong>This retrospective study included 164 adult patients who underwent heart transplantation between January 2013 and December 2022. A deep learning-based tool was utilized to automatically calculate cross-sectional skeletal muscle area at the T11, T12, and L1 levels on chest computed tomography. Radiographic sarcopenia was defined as skeletal muscle index (skeletal muscle area divided by height squared) in the lowest sex-specific quartile.</p><p><strong>Results: </strong>The study population had a mean age of 53±14 years and was predominantly male (75%) with a nonischemic cause (73%). Mean skeletal muscle index was 28.3±7.6 cm<sup>2</sup>/m<sup>2</sup> for females versus 33.1±8.1 cm<sup>2</sup>/m<sup>2</sup> for males (<i>P</i><0.001). Cardiac allograft survival was significantly lower in heart transplant recipients with versus without radiographic sarcopenia at T11 (90% versus 98% at 1 year, 83% versus 97% at 3 years, log-rank <i>P</i>=0.02). After multivariable adjustment, radiographic sarcopenia at T11 was associated with an increased risk of cardiac allograft loss or death (hazard ratio, 3.86 [95% CI, 1.35-11.0]; <i>P</i>=0.01). Patients with radiographic sarcopenia also had a significantly increased hospital length of stay (28 [interquartile range, 19-33] versus 20 [interquartile range, 16-31] days; <i>P</i>=0.046).</p><p><strong>Conclusions: </strong>Fully automated quantification of radiographic sarcopenia using pretransplant chest computed tomography successfully predicts cardiac allograft survival. By avoiding interobserver variability and accelerating computation, this approach has the potential to improve candidate selection and outcomes in heart transplantation.</p>","PeriodicalId":10196,"journal":{"name":"Circulation: Heart Failure","volume":" ","pages":"e012805"},"PeriodicalIF":8.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sarcopenia Assessment Using Fully Automated Deep Learning Predicts Cardiac Allograft Survival in Heart Transplant Recipients.\",\"authors\":\"Frederick M Lang, Jianfei Liu, Kevin J Clerkin, Elissa A Driggin, Andrew J Einstein, Gabriel T Sayer, Koji Takeda, Nir Uriel, Ronald M Summers, Veli K Topkara\",\"doi\":\"10.1161/CIRCHEARTFAILURE.125.012805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sarcopenia is associated with adverse outcomes in patients with end-stage heart failure. Muscle mass can be quantified via manual segmentation of computed tomography images, but this approach is time-consuming and subject to interobserver variability. We sought to determine whether fully automated assessment of radiographic sarcopenia by deep learning would predict heart transplantation outcomes.</p><p><strong>Methods: </strong>This retrospective study included 164 adult patients who underwent heart transplantation between January 2013 and December 2022. A deep learning-based tool was utilized to automatically calculate cross-sectional skeletal muscle area at the T11, T12, and L1 levels on chest computed tomography. Radiographic sarcopenia was defined as skeletal muscle index (skeletal muscle area divided by height squared) in the lowest sex-specific quartile.</p><p><strong>Results: </strong>The study population had a mean age of 53±14 years and was predominantly male (75%) with a nonischemic cause (73%). Mean skeletal muscle index was 28.3±7.6 cm<sup>2</sup>/m<sup>2</sup> for females versus 33.1±8.1 cm<sup>2</sup>/m<sup>2</sup> for males (<i>P</i><0.001). Cardiac allograft survival was significantly lower in heart transplant recipients with versus without radiographic sarcopenia at T11 (90% versus 98% at 1 year, 83% versus 97% at 3 years, log-rank <i>P</i>=0.02). After multivariable adjustment, radiographic sarcopenia at T11 was associated with an increased risk of cardiac allograft loss or death (hazard ratio, 3.86 [95% CI, 1.35-11.0]; <i>P</i>=0.01). Patients with radiographic sarcopenia also had a significantly increased hospital length of stay (28 [interquartile range, 19-33] versus 20 [interquartile range, 16-31] days; <i>P</i>=0.046).</p><p><strong>Conclusions: </strong>Fully automated quantification of radiographic sarcopenia using pretransplant chest computed tomography successfully predicts cardiac allograft survival. By avoiding interobserver variability and accelerating computation, this approach has the potential to improve candidate selection and outcomes in heart transplantation.</p>\",\"PeriodicalId\":10196,\"journal\":{\"name\":\"Circulation: Heart Failure\",\"volume\":\" \",\"pages\":\"e012805\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Heart Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCHEARTFAILURE.125.012805\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Heart Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCHEARTFAILURE.125.012805","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Sarcopenia Assessment Using Fully Automated Deep Learning Predicts Cardiac Allograft Survival in Heart Transplant Recipients.
Background: Sarcopenia is associated with adverse outcomes in patients with end-stage heart failure. Muscle mass can be quantified via manual segmentation of computed tomography images, but this approach is time-consuming and subject to interobserver variability. We sought to determine whether fully automated assessment of radiographic sarcopenia by deep learning would predict heart transplantation outcomes.
Methods: This retrospective study included 164 adult patients who underwent heart transplantation between January 2013 and December 2022. A deep learning-based tool was utilized to automatically calculate cross-sectional skeletal muscle area at the T11, T12, and L1 levels on chest computed tomography. Radiographic sarcopenia was defined as skeletal muscle index (skeletal muscle area divided by height squared) in the lowest sex-specific quartile.
Results: The study population had a mean age of 53±14 years and was predominantly male (75%) with a nonischemic cause (73%). Mean skeletal muscle index was 28.3±7.6 cm2/m2 for females versus 33.1±8.1 cm2/m2 for males (P<0.001). Cardiac allograft survival was significantly lower in heart transplant recipients with versus without radiographic sarcopenia at T11 (90% versus 98% at 1 year, 83% versus 97% at 3 years, log-rank P=0.02). After multivariable adjustment, radiographic sarcopenia at T11 was associated with an increased risk of cardiac allograft loss or death (hazard ratio, 3.86 [95% CI, 1.35-11.0]; P=0.01). Patients with radiographic sarcopenia also had a significantly increased hospital length of stay (28 [interquartile range, 19-33] versus 20 [interquartile range, 16-31] days; P=0.046).
Conclusions: Fully automated quantification of radiographic sarcopenia using pretransplant chest computed tomography successfully predicts cardiac allograft survival. By avoiding interobserver variability and accelerating computation, this approach has the potential to improve candidate selection and outcomes in heart transplantation.
期刊介绍:
Circulation: Heart Failure focuses on content related to heart failure, mechanical circulatory support, and heart transplant science and medicine. It considers studies conducted in humans or analyses of human data, as well as preclinical studies with direct clinical correlation or relevance. While primarily a clinical journal, it may publish novel basic and preclinical studies that significantly advance the field of heart failure.