Cu3SbS4-Sb2S3异质结构功能化pet衍生碳泡沫用于高效界面太阳能海水淡化。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-08-20 DOI:10.1002/smll.202506862
Muzammil Hussain, Kassa Belay Ibrahim, Enrique Rodríguez-Castellón, Silvia Gross, Pawan Kumar, Stéphanie Bruyère, David Horwat, Elisa Moretti, Alberto Vomiero, Tofik Ahmed Shifa
{"title":"Cu3SbS4-Sb2S3异质结构功能化pet衍生碳泡沫用于高效界面太阳能海水淡化。","authors":"Muzammil Hussain, Kassa Belay Ibrahim, Enrique Rodríguez-Castellón, Silvia Gross, Pawan Kumar, Stéphanie Bruyère, David Horwat, Elisa Moretti, Alberto Vomiero, Tofik Ahmed Shifa","doi":"10.1002/smll.202506862","DOIUrl":null,"url":null,"abstract":"<p><p>Solar desalination is an emerging technique to produce fresh water utilizing renewable solar energy. However, the engineering of efficient photothermal material is a significant obstacle. In the present study, a carbon foam is synthesized from the upcycling of waste PET and hydrothermally functionalized with a heterostructure composed of Cu<sub>3</sub>SbS<sub>4</sub> and Sb<sub>2</sub>S<sub>3</sub>. Material characterizations demonstrated the successful decoration of nanochannels on graphitic carbon foam (CF). The analysis of the optical properties in the UV/Vis-NIR spectral range demonstrated excellent absorption properties of 96% for Cu<sub>3</sub>SbS<sub>4</sub>-Sb<sub>2</sub>S<sub>3</sub>/CF compared to Sb<sub>2</sub>S<sub>3</sub>/CF (48%) and CF (68%) in near-IR. Photothermal desalination results reveal the evaporation rate of 2.82 kg m<sup>-2</sup> h<sup>-1</sup> for Cu<sub>3</sub>SbS<sub>4</sub>-Sb<sub>2</sub>S<sub>3</sub>/CF compared to  1.4 kg m<sup>-2</sup> h<sup>-1</sup> for Sb<sub>2</sub>S<sub>3</sub>/CF and  1.58 kg m<sup>-2</sup> h<sup>-1</sup>  for CF, with 99% salt removal in condensed water. The formation of the composite leads to a high surface temperature and enhanced evaporation rate. The contact angle analysis confirmed the hydrophilic nature of the material that plays a crucial role in the solar desalination process. These findings elucidate the effective photothermal performance achieved through chalcogenide heterostructure engineering supported on upcycled carbon foam derived from waste PET, demonstrating a practical application aligned with circular economy principles in solar desalination.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e06862"},"PeriodicalIF":12.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycled PET-Derived Carbon Foam Functionalized with Cu<sub>3</sub>SbS<sub>4</sub>-Sb<sub>2</sub>S<sub>3</sub> Heterostructures for Efficient Interfacial Solar Desalination.\",\"authors\":\"Muzammil Hussain, Kassa Belay Ibrahim, Enrique Rodríguez-Castellón, Silvia Gross, Pawan Kumar, Stéphanie Bruyère, David Horwat, Elisa Moretti, Alberto Vomiero, Tofik Ahmed Shifa\",\"doi\":\"10.1002/smll.202506862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solar desalination is an emerging technique to produce fresh water utilizing renewable solar energy. However, the engineering of efficient photothermal material is a significant obstacle. In the present study, a carbon foam is synthesized from the upcycling of waste PET and hydrothermally functionalized with a heterostructure composed of Cu<sub>3</sub>SbS<sub>4</sub> and Sb<sub>2</sub>S<sub>3</sub>. Material characterizations demonstrated the successful decoration of nanochannels on graphitic carbon foam (CF). The analysis of the optical properties in the UV/Vis-NIR spectral range demonstrated excellent absorption properties of 96% for Cu<sub>3</sub>SbS<sub>4</sub>-Sb<sub>2</sub>S<sub>3</sub>/CF compared to Sb<sub>2</sub>S<sub>3</sub>/CF (48%) and CF (68%) in near-IR. Photothermal desalination results reveal the evaporation rate of 2.82 kg m<sup>-2</sup> h<sup>-1</sup> for Cu<sub>3</sub>SbS<sub>4</sub>-Sb<sub>2</sub>S<sub>3</sub>/CF compared to  1.4 kg m<sup>-2</sup> h<sup>-1</sup> for Sb<sub>2</sub>S<sub>3</sub>/CF and  1.58 kg m<sup>-2</sup> h<sup>-1</sup>  for CF, with 99% salt removal in condensed water. The formation of the composite leads to a high surface temperature and enhanced evaporation rate. The contact angle analysis confirmed the hydrophilic nature of the material that plays a crucial role in the solar desalination process. These findings elucidate the effective photothermal performance achieved through chalcogenide heterostructure engineering supported on upcycled carbon foam derived from waste PET, demonstrating a practical application aligned with circular economy principles in solar desalination.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e06862\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202506862\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202506862","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太阳能海水淡化是一种利用可再生太阳能生产淡水的新兴技术。然而,高效光热材料的工程是一个重大障碍。本研究以废PET为原料,利用Cu3SbS4和Sb2S3组成的异质结构进行水热功能化,合成了泡沫碳。材料表征证明了纳米通道在石墨碳泡沫(CF)上的成功修饰。紫外/可见光-近红外光谱范围内的光学性质分析表明,Cu3SbS4-Sb2S3/CF的近红外吸收性能为96%,而Sb2S3/CF的近红外吸收性能为48%,CF的近红外吸收性能为68%。光热脱盐结果表明,Cu3SbS4-Sb2S3/CF的蒸发速率为2.82 kg m-2 h-1,而Sb2S3/CF的蒸发速率为1.4 kg m-2 h-1, CF的蒸发速率为1.58 kg m-2 h-1,冷凝水的盐去除率为99%。复合材料的形成导致表面温度升高,蒸发速率加快。接触角分析证实了材料的亲水性,这在太阳能脱盐过程中起着至关重要的作用。这些发现阐明了通过硫族化物异质结构工程支持从废弃PET中提取的再生碳泡沫获得有效的光热性能,展示了符合循环经济原则的太阳能脱盐的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upcycled PET-Derived Carbon Foam Functionalized with Cu3SbS4-Sb2S3 Heterostructures for Efficient Interfacial Solar Desalination.

Solar desalination is an emerging technique to produce fresh water utilizing renewable solar energy. However, the engineering of efficient photothermal material is a significant obstacle. In the present study, a carbon foam is synthesized from the upcycling of waste PET and hydrothermally functionalized with a heterostructure composed of Cu3SbS4 and Sb2S3. Material characterizations demonstrated the successful decoration of nanochannels on graphitic carbon foam (CF). The analysis of the optical properties in the UV/Vis-NIR spectral range demonstrated excellent absorption properties of 96% for Cu3SbS4-Sb2S3/CF compared to Sb2S3/CF (48%) and CF (68%) in near-IR. Photothermal desalination results reveal the evaporation rate of 2.82 kg m-2 h-1 for Cu3SbS4-Sb2S3/CF compared to  1.4 kg m-2 h-1 for Sb2S3/CF and  1.58 kg m-2 h-1  for CF, with 99% salt removal in condensed water. The formation of the composite leads to a high surface temperature and enhanced evaporation rate. The contact angle analysis confirmed the hydrophilic nature of the material that plays a crucial role in the solar desalination process. These findings elucidate the effective photothermal performance achieved through chalcogenide heterostructure engineering supported on upcycled carbon foam derived from waste PET, demonstrating a practical application aligned with circular economy principles in solar desalination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信