脚本:预测单细胞远程顺式调节基于预训练的图注意网络。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Zhang, Baole Wen, Yifeng Jiao, Yuchen Liu, Xin Guo, Yushuai Wu, Jiyang Li, Limei Han, Yinghui Xu, Xin Gao, Yuan Qi, Yuan Cheng, Ying He, Weidong Tian
{"title":"脚本:预测单细胞远程顺式调节基于预训练的图注意网络。","authors":"Yu Zhang, Baole Wen, Yifeng Jiao, Yuchen Liu, Xin Guo, Yushuai Wu, Jiyang Li, Limei Han, Yinghui Xu, Xin Gao, Yuan Qi, Yuan Cheng, Ying He, Weidong Tian","doi":"10.1002/advs.202505021","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell cis-regulatory relationships (CRRs) are essential for deciphering transcriptional regulation and understanding the pathogenic mechanisms of disease-associated non-coding variants. Existing computational methods struggle to accurately predict single-cell CRRs due to inadequately integrating causal biological principles and large-scale single-cell data. Here, SCRIPT (Single-cell Cis-regulatory Relationship Identifier based on Pre-Trained graph attention networks) is presented for inferring single-cell CRRs from transcriptomic and chromatin accessibility data. SCRIPT incorporates two key innovations: graph causal attention networks supported by empirical CRR evidence, and representation learning enhanced through pretraining on atlas-scale single-cell chromatin accessibility data. Validation using cell-type-specific chromatin contact and CRISPR perturbation data demonstrates that SCRIPT achieves a mean AUC of 0.89, significantly outperforming state-of-the-art methods (AUC: 0.7). Notably, SCRIPT obtains an over twofold improvement in predicting long-range CRRs (>100 Kb) compared to existing methods. By applying SCRIPT to Alzheimer's disease and schizophrenia, a framework is established for prioritizing disease-causing variants and elucidating their functional effects in a cell-type-specific manner. By uncovering molecular genetic mechanisms undetected by existing computational methods, SCRIPT provides a roadmap for advancing genetic diagnosis and target discovery.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e05021"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCRIPT: Predicting Single-Cell Long-Range Cis-Regulation Based on Pretrained Graph Attention Networks.\",\"authors\":\"Yu Zhang, Baole Wen, Yifeng Jiao, Yuchen Liu, Xin Guo, Yushuai Wu, Jiyang Li, Limei Han, Yinghui Xu, Xin Gao, Yuan Qi, Yuan Cheng, Ying He, Weidong Tian\",\"doi\":\"10.1002/advs.202505021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell cis-regulatory relationships (CRRs) are essential for deciphering transcriptional regulation and understanding the pathogenic mechanisms of disease-associated non-coding variants. Existing computational methods struggle to accurately predict single-cell CRRs due to inadequately integrating causal biological principles and large-scale single-cell data. Here, SCRIPT (Single-cell Cis-regulatory Relationship Identifier based on Pre-Trained graph attention networks) is presented for inferring single-cell CRRs from transcriptomic and chromatin accessibility data. SCRIPT incorporates two key innovations: graph causal attention networks supported by empirical CRR evidence, and representation learning enhanced through pretraining on atlas-scale single-cell chromatin accessibility data. Validation using cell-type-specific chromatin contact and CRISPR perturbation data demonstrates that SCRIPT achieves a mean AUC of 0.89, significantly outperforming state-of-the-art methods (AUC: 0.7). Notably, SCRIPT obtains an over twofold improvement in predicting long-range CRRs (>100 Kb) compared to existing methods. By applying SCRIPT to Alzheimer's disease and schizophrenia, a framework is established for prioritizing disease-causing variants and elucidating their functional effects in a cell-type-specific manner. By uncovering molecular genetic mechanisms undetected by existing computational methods, SCRIPT provides a roadmap for advancing genetic diagnosis and target discovery.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e05021\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202505021\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202505021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞顺式调控关系(CRRs)对于破译转录调控和理解疾病相关非编码变异的致病机制至关重要。由于没有充分整合因果生物学原理和大规模单细胞数据,现有的计算方法难以准确预测单细胞crr。本文提出了SCRIPT(基于预训练图注意网络的单细胞顺式调节关系标识符),用于从转录组学和染色质可及性数据推断单细胞crr。SCRIPT包含两个关键创新:由经验CRR证据支持的图表因果注意网络,以及通过对atlas尺度单细胞染色质可及性数据的预训练增强的表征学习。使用细胞类型特异性染色质接触和CRISPR扰动数据进行验证表明,SCRIPT的平均AUC为0.89,显著优于最先进的方法(AUC: 0.7)。值得注意的是,与现有方法相比,SCRIPT在预测远程crr (bbb100 Kb)方面提高了两倍以上。通过将SCRIPT应用于阿尔茨海默病和精神分裂症,建立了一个框架,以确定致病变异的优先级,并以细胞类型特异性的方式阐明它们的功能影响。通过揭示现有计算方法未发现的分子遗传机制,SCRIPT为推进遗传诊断和靶点发现提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCRIPT: Predicting Single-Cell Long-Range Cis-Regulation Based on Pretrained Graph Attention Networks.

Single-cell cis-regulatory relationships (CRRs) are essential for deciphering transcriptional regulation and understanding the pathogenic mechanisms of disease-associated non-coding variants. Existing computational methods struggle to accurately predict single-cell CRRs due to inadequately integrating causal biological principles and large-scale single-cell data. Here, SCRIPT (Single-cell Cis-regulatory Relationship Identifier based on Pre-Trained graph attention networks) is presented for inferring single-cell CRRs from transcriptomic and chromatin accessibility data. SCRIPT incorporates two key innovations: graph causal attention networks supported by empirical CRR evidence, and representation learning enhanced through pretraining on atlas-scale single-cell chromatin accessibility data. Validation using cell-type-specific chromatin contact and CRISPR perturbation data demonstrates that SCRIPT achieves a mean AUC of 0.89, significantly outperforming state-of-the-art methods (AUC: 0.7). Notably, SCRIPT obtains an over twofold improvement in predicting long-range CRRs (>100 Kb) compared to existing methods. By applying SCRIPT to Alzheimer's disease and schizophrenia, a framework is established for prioritizing disease-causing variants and elucidating their functional effects in a cell-type-specific manner. By uncovering molecular genetic mechanisms undetected by existing computational methods, SCRIPT provides a roadmap for advancing genetic diagnosis and target discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信