双曲格中的反常拓扑抽运。

IF 21.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hao Yuan , Weixuan Zhang , Na Sun , Fengxiao Di , Wenhui Cao , Xiangdong Zhang
{"title":"双曲格中的反常拓扑抽运。","authors":"Hao Yuan ,&nbsp;Weixuan Zhang ,&nbsp;Na Sun ,&nbsp;Fengxiao Di ,&nbsp;Wenhui Cao ,&nbsp;Xiangdong Zhang","doi":"10.1016/j.scib.2025.07.040","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperbolic lattices—non-Euclidean regular tilings with constant negative curvature—provide a unique framework to explore curvature-driven topological phenomena inaccessible in flat geometries. While recent advances have focused on static hyperbolic systems, the dynamical interplay between curved space and time-modulated topology remains uncharted. Here, we study the topological pumping in hyperbolic lattices, discovering anomalous phenomena with no Euclidean analogs. Notably, 2D hyperbolic pumping emulates 8D quantum Hall physics, transcending conventional dimensional constraints. We further demonstrate that pumping trajectories are governed by a synergy of Chern numbers (1st to 4th) and periodic boundary condition (PBC) configurations. Remarkably, specific PBCs trigger a periodic topological oscillation, where quantized transport collapses into time-recurrent cycles. Experimentally, time-modulated hyperbolic circuits validate both high-dimensional quantum Hall signatures and PBC-dependent topological dynamics. Our work pioneers the exploration of topological pumping in hyperbolic lattices, showcasing the transformative impact of non-Euclidean geometry on topological phenomena.</div></div>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":"70 19","pages":"Pages 3146-3153"},"PeriodicalIF":21.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous topological pumping in hyperbolic lattices\",\"authors\":\"Hao Yuan ,&nbsp;Weixuan Zhang ,&nbsp;Na Sun ,&nbsp;Fengxiao Di ,&nbsp;Wenhui Cao ,&nbsp;Xiangdong Zhang\",\"doi\":\"10.1016/j.scib.2025.07.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hyperbolic lattices—non-Euclidean regular tilings with constant negative curvature—provide a unique framework to explore curvature-driven topological phenomena inaccessible in flat geometries. While recent advances have focused on static hyperbolic systems, the dynamical interplay between curved space and time-modulated topology remains uncharted. Here, we study the topological pumping in hyperbolic lattices, discovering anomalous phenomena with no Euclidean analogs. Notably, 2D hyperbolic pumping emulates 8D quantum Hall physics, transcending conventional dimensional constraints. We further demonstrate that pumping trajectories are governed by a synergy of Chern numbers (1st to 4th) and periodic boundary condition (PBC) configurations. Remarkably, specific PBCs trigger a periodic topological oscillation, where quantized transport collapses into time-recurrent cycles. Experimentally, time-modulated hyperbolic circuits validate both high-dimensional quantum Hall signatures and PBC-dependent topological dynamics. Our work pioneers the exploration of topological pumping in hyperbolic lattices, showcasing the transformative impact of non-Euclidean geometry on topological phenomena.</div></div>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\"70 19\",\"pages\":\"Pages 3146-3153\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095927325007911\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095927325007911","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

双曲格-具有恒定负曲率的非欧几里得正则瓦片-提供了一个独特的框架来探索平面几何中无法获得的曲率驱动拓扑现象。虽然最近的进展主要集中在静态双曲系统,但弯曲空间和时调制拓扑之间的动态相互作用仍然未知。在这里,我们研究了双曲格中的拓扑泵浦,发现了没有欧几里得类似物的反常现象。值得注意的是,二维双曲泵浦模拟了8D量子霍尔物理,超越了传统的维度限制。我们进一步证明了抽运轨迹是由陈氏数(1到4)和周期边界条件(PBC)配置的协同作用所控制的。值得注意的是,特定的pbc触发周期性拓扑振荡,其中量子化输运崩溃为时间周期性循环。实验上,时间调制双曲电路验证了高维量子霍尔特征和pbc相关的拓扑动力学。我们的工作是探索双曲晶格中拓扑抽运的先驱,展示了非欧几里得几何对拓扑现象的变革性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anomalous topological pumping in hyperbolic lattices

Anomalous topological pumping in hyperbolic lattices
Hyperbolic lattices—non-Euclidean regular tilings with constant negative curvature—provide a unique framework to explore curvature-driven topological phenomena inaccessible in flat geometries. While recent advances have focused on static hyperbolic systems, the dynamical interplay between curved space and time-modulated topology remains uncharted. Here, we study the topological pumping in hyperbolic lattices, discovering anomalous phenomena with no Euclidean analogs. Notably, 2D hyperbolic pumping emulates 8D quantum Hall physics, transcending conventional dimensional constraints. We further demonstrate that pumping trajectories are governed by a synergy of Chern numbers (1st to 4th) and periodic boundary condition (PBC) configurations. Remarkably, specific PBCs trigger a periodic topological oscillation, where quantized transport collapses into time-recurrent cycles. Experimentally, time-modulated hyperbolic circuits validate both high-dimensional quantum Hall signatures and PBC-dependent topological dynamics. Our work pioneers the exploration of topological pumping in hyperbolic lattices, showcasing the transformative impact of non-Euclidean geometry on topological phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信