原位聚合杂化电解质的纳米级混相加速离子动力学并实现锂金属电池的稳定循环。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-19 DOI:10.1021/acsnano.5c08040
M Shahriar, Monojoy Goswami, Jong K. Keum, Harry M. Meyer III, Md Anisur Rahman, Ruhul Amin, Catalin Gainaru, Alexei P. Sokolov, Jaswinder Sharma and Georgios Polizos*, 
{"title":"原位聚合杂化电解质的纳米级混相加速离子动力学并实现锂金属电池的稳定循环。","authors":"M Shahriar,&nbsp;Monojoy Goswami,&nbsp;Jong K. Keum,&nbsp;Harry M. Meyer III,&nbsp;Md Anisur Rahman,&nbsp;Ruhul Amin,&nbsp;Catalin Gainaru,&nbsp;Alexei P. Sokolov,&nbsp;Jaswinder Sharma and Georgios Polizos*,&nbsp;","doi":"10.1021/acsnano.5c08040","DOIUrl":null,"url":null,"abstract":"<p >While the potential use of copolymerized electrolytes in Li metal batteries is subject to intense investigation, the fundamental understanding of the nanoscale domain formation and its effect on Li<sup>+</sup> transport is still lacking. In this study, we investigated the correlation between the Li<sup>+</sup> transport mechanism and the miscibility of monomers in polymer blend electrolytes derived from the in situ copolymerization of methyl methacrylate (MMA) and vinylene carbonate (VC) in the presence of polyethylene glycol dimethyl ether (PEGDME) plasticizer and bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The addition of a polar short chain plasticizer reduced the dynamic and structural heterogeneities of the electrolyte. Small-angle X-ray scattering (SAXS) measurements and coarse-grained molecular dynamics (MD) simulations were used to investigate the nanoscale structure of the electrolytes. The distribution of relaxation times corresponding to the three distinct diffusion mechanisms of the free and interfacial Li<sup>+</sup> ions at the copolymer/plasticizer and electrolyte/SEI boundaries was analyzed in a broad temperature range to elucidate the Li<sup>+</sup> transport mechanism. The chemical composition of the SEI and the contribution of a ceramic lithium lanthanum zirconium oxide (LLZO, Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>) phase on the interfacial resistance, salt degradation, and SEI stability were studied by X-ray photoelectron spectroscopy (XPS) depth profile analysis and electrochemical testing.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 34","pages":"30973–30985"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Miscibility in In Situ Polymerized Hybrid Electrolytes Speeds Up Ion Dynamics and Enables Stable Cycling of Li Metal Batteries\",\"authors\":\"M Shahriar,&nbsp;Monojoy Goswami,&nbsp;Jong K. Keum,&nbsp;Harry M. Meyer III,&nbsp;Md Anisur Rahman,&nbsp;Ruhul Amin,&nbsp;Catalin Gainaru,&nbsp;Alexei P. Sokolov,&nbsp;Jaswinder Sharma and Georgios Polizos*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c08040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >While the potential use of copolymerized electrolytes in Li metal batteries is subject to intense investigation, the fundamental understanding of the nanoscale domain formation and its effect on Li<sup>+</sup> transport is still lacking. In this study, we investigated the correlation between the Li<sup>+</sup> transport mechanism and the miscibility of monomers in polymer blend electrolytes derived from the in situ copolymerization of methyl methacrylate (MMA) and vinylene carbonate (VC) in the presence of polyethylene glycol dimethyl ether (PEGDME) plasticizer and bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The addition of a polar short chain plasticizer reduced the dynamic and structural heterogeneities of the electrolyte. Small-angle X-ray scattering (SAXS) measurements and coarse-grained molecular dynamics (MD) simulations were used to investigate the nanoscale structure of the electrolytes. The distribution of relaxation times corresponding to the three distinct diffusion mechanisms of the free and interfacial Li<sup>+</sup> ions at the copolymer/plasticizer and electrolyte/SEI boundaries was analyzed in a broad temperature range to elucidate the Li<sup>+</sup> transport mechanism. The chemical composition of the SEI and the contribution of a ceramic lithium lanthanum zirconium oxide (LLZO, Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>) phase on the interfacial resistance, salt degradation, and SEI stability were studied by X-ray photoelectron spectroscopy (XPS) depth profile analysis and electrochemical testing.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 34\",\"pages\":\"30973–30985\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c08040\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08040","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然共聚电解质在锂金属电池中的潜在用途有待深入研究,但对纳米级结构域的形成及其对Li+输运的影响的基本理解仍然缺乏。在本研究中,我们研究了在聚乙二醇二甲醚(PEGDME)增塑剂和双(三氟甲烷磺酰)亚胺(LiTFSI)盐存在下,甲基丙烯酸甲酯(MMA)和碳酸乙烯酯(VC)原位共聚的聚合物共混电解质中Li+的传输机制与单体混溶的关系。极性短链增塑剂的加入降低了电解质的动力学和结构非均质性。采用小角x射线散射(SAXS)测量和粗粒度分子动力学(MD)模拟研究了电解质的纳米级结构。在较宽的温度范围内分析了自由Li+离子和界面Li+离子在共聚物/增塑剂和电解质/SEI边界上的三种不同扩散机制对应的弛豫时间分布,以阐明Li+的输运机制。通过x射线光电子能谱(XPS)深度剖面分析和电化学测试,研究了SEI的化学组成和陶瓷氧化锂镧锆(LLZO, Li7La3Zr2O12)相对界面电阻、盐降解和SEI稳定性的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoscale Miscibility in In Situ Polymerized Hybrid Electrolytes Speeds Up Ion Dynamics and Enables Stable Cycling of Li Metal Batteries

Nanoscale Miscibility in In Situ Polymerized Hybrid Electrolytes Speeds Up Ion Dynamics and Enables Stable Cycling of Li Metal Batteries

While the potential use of copolymerized electrolytes in Li metal batteries is subject to intense investigation, the fundamental understanding of the nanoscale domain formation and its effect on Li+ transport is still lacking. In this study, we investigated the correlation between the Li+ transport mechanism and the miscibility of monomers in polymer blend electrolytes derived from the in situ copolymerization of methyl methacrylate (MMA) and vinylene carbonate (VC) in the presence of polyethylene glycol dimethyl ether (PEGDME) plasticizer and bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The addition of a polar short chain plasticizer reduced the dynamic and structural heterogeneities of the electrolyte. Small-angle X-ray scattering (SAXS) measurements and coarse-grained molecular dynamics (MD) simulations were used to investigate the nanoscale structure of the electrolytes. The distribution of relaxation times corresponding to the three distinct diffusion mechanisms of the free and interfacial Li+ ions at the copolymer/plasticizer and electrolyte/SEI boundaries was analyzed in a broad temperature range to elucidate the Li+ transport mechanism. The chemical composition of the SEI and the contribution of a ceramic lithium lanthanum zirconium oxide (LLZO, Li7La3Zr2O12) phase on the interfacial resistance, salt degradation, and SEI stability were studied by X-ray photoelectron spectroscopy (XPS) depth profile analysis and electrochemical testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信