Jianlan Luo, Charles Xu, Jeffrey Wu, Sergey Levine
{"title":"通过人在环强化学习的精确和灵巧的机器人操作","authors":"Jianlan Luo, Charles Xu, Jeffrey Wu, Sergey Levine","doi":"10.1126/scirobotics.ads5033","DOIUrl":null,"url":null,"abstract":"<div >Robotic manipulation remains one of the most difficult challenges in robotics, with approaches ranging from classical model-based control to modern imitation learning. Although these methods have enabled substantial progress, they often require extensive manual design, struggle with performance, and demand large-scale data collection. These limitations hinder their real-world deployment at scale, where reliability, speed, and robustness are essential. Reinforcement learning (RL) offers a powerful alternative by enabling robots to autonomously acquire complex manipulation skills through interaction. However, realizing the full potential of RL in the real world remains challenging because of issues of sample efficiency and safety. We present a human-in-the-loop, vision-based RL system that achieved strong performance on a wide range of dexterous manipulation tasks, including precise assembly, dynamic manipulation, and dual-arm coordination. These tasks reflect realistic industrial tolerances, with small but critical variations in initial object placements that demand sophisticated reactive control. Our method integrates demonstrations, human corrections, sample-efficient RL algorithms, and system-level design to directly learn RL policies in the real world. Within 1 to 2.5 hours of real-world training, our approach outperformed other baselines by improving task success by 2×, achieving near-perfect success rates, and executing 1.8× faster on average. Through extensive experiments and analysis, our results suggest that RL can learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope that this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 105","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise and dexterous robotic manipulation via human-in-the-loop reinforcement learning\",\"authors\":\"Jianlan Luo, Charles Xu, Jeffrey Wu, Sergey Levine\",\"doi\":\"10.1126/scirobotics.ads5033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Robotic manipulation remains one of the most difficult challenges in robotics, with approaches ranging from classical model-based control to modern imitation learning. Although these methods have enabled substantial progress, they often require extensive manual design, struggle with performance, and demand large-scale data collection. These limitations hinder their real-world deployment at scale, where reliability, speed, and robustness are essential. Reinforcement learning (RL) offers a powerful alternative by enabling robots to autonomously acquire complex manipulation skills through interaction. However, realizing the full potential of RL in the real world remains challenging because of issues of sample efficiency and safety. We present a human-in-the-loop, vision-based RL system that achieved strong performance on a wide range of dexterous manipulation tasks, including precise assembly, dynamic manipulation, and dual-arm coordination. These tasks reflect realistic industrial tolerances, with small but critical variations in initial object placements that demand sophisticated reactive control. Our method integrates demonstrations, human corrections, sample-efficient RL algorithms, and system-level design to directly learn RL policies in the real world. Within 1 to 2.5 hours of real-world training, our approach outperformed other baselines by improving task success by 2×, achieving near-perfect success rates, and executing 1.8× faster on average. Through extensive experiments and analysis, our results suggest that RL can learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope that this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"10 105\",\"pages\":\"\"},\"PeriodicalIF\":27.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.ads5033\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.ads5033","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Precise and dexterous robotic manipulation via human-in-the-loop reinforcement learning
Robotic manipulation remains one of the most difficult challenges in robotics, with approaches ranging from classical model-based control to modern imitation learning. Although these methods have enabled substantial progress, they often require extensive manual design, struggle with performance, and demand large-scale data collection. These limitations hinder their real-world deployment at scale, where reliability, speed, and robustness are essential. Reinforcement learning (RL) offers a powerful alternative by enabling robots to autonomously acquire complex manipulation skills through interaction. However, realizing the full potential of RL in the real world remains challenging because of issues of sample efficiency and safety. We present a human-in-the-loop, vision-based RL system that achieved strong performance on a wide range of dexterous manipulation tasks, including precise assembly, dynamic manipulation, and dual-arm coordination. These tasks reflect realistic industrial tolerances, with small but critical variations in initial object placements that demand sophisticated reactive control. Our method integrates demonstrations, human corrections, sample-efficient RL algorithms, and system-level design to directly learn RL policies in the real world. Within 1 to 2.5 hours of real-world training, our approach outperformed other baselines by improving task success by 2×, achieving near-perfect success rates, and executing 1.8× faster on average. Through extensive experiments and analysis, our results suggest that RL can learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope that this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.