叶片包覆宽禁带钙钛矿中囚禁2H中间相用于高效全钙钛矿串联太阳能电池

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dexin Pu, Xuhao Zhang, Hongyi Fang, Weichen Shen, Guoyi Chen, Weiqing Chen, Peng Jia, Guang Li, Hongling Guan, Lishuai Huang, Yuan Zhou, Jiahao Wang, Wenwen Zheng, Weiwei Meng, Guojia Fang, Weijun Ke
{"title":"叶片包覆宽禁带钙钛矿中囚禁2H中间相用于高效全钙钛矿串联太阳能电池","authors":"Dexin Pu,&nbsp;Xuhao Zhang,&nbsp;Hongyi Fang,&nbsp;Weichen Shen,&nbsp;Guoyi Chen,&nbsp;Weiqing Chen,&nbsp;Peng Jia,&nbsp;Guang Li,&nbsp;Hongling Guan,&nbsp;Lishuai Huang,&nbsp;Yuan Zhou,&nbsp;Jiahao Wang,&nbsp;Wenwen Zheng,&nbsp;Weiwei Meng,&nbsp;Guojia Fang,&nbsp;Weijun Ke","doi":"10.1126/sciadv.ady3621","DOIUrl":null,"url":null,"abstract":"<div >Scalable fabrication of high-efficiency all-perovskite tandem solar cells (TSCs) remains challenging due to notable voltage deficits in wide-bandgap perovskite solar cells, primarily driven by severe halide segregation during the large-scale blade coating process. Here, we introduce 4-aminobenzylphosphonic acid as a functional “2H-imprison” additive that selectively bypasses the formation of the 2H phase (an iodine-rich structure) and promotes the direct crystallization of the desired 3C phase, resulting in a homogeneous phase and halide distribution. Consequently, blade-coated 1.77–electron volt–bandgap perovskite solar cells achieved a power conversion efficiency (PCE) of 20.35% (certified 19.72%) with an open-circuit voltage of 1.35 volts for a ~0.07–square centimeter aperture area, while 1.02–square centimeter devices delivered a PCE of 19.00%. Furthermore, the corresponding blade-coated two- and four-terminal all-perovskite TSCs demonstrated high PCEs of 27.34 and 28.46%, respectively. This study reveals the origins of phase segregation during blade coating and provides a viable strategy to mitigate it, paving the way for scalable and high-efficiency TSCs.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 34","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady3621","citationCount":"0","resultStr":"{\"title\":\"Imprisoning 2H intermediate phases in blade-coated wide-bandgap perovskites for efficient all-perovskite tandem solar cells\",\"authors\":\"Dexin Pu,&nbsp;Xuhao Zhang,&nbsp;Hongyi Fang,&nbsp;Weichen Shen,&nbsp;Guoyi Chen,&nbsp;Weiqing Chen,&nbsp;Peng Jia,&nbsp;Guang Li,&nbsp;Hongling Guan,&nbsp;Lishuai Huang,&nbsp;Yuan Zhou,&nbsp;Jiahao Wang,&nbsp;Wenwen Zheng,&nbsp;Weiwei Meng,&nbsp;Guojia Fang,&nbsp;Weijun Ke\",\"doi\":\"10.1126/sciadv.ady3621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Scalable fabrication of high-efficiency all-perovskite tandem solar cells (TSCs) remains challenging due to notable voltage deficits in wide-bandgap perovskite solar cells, primarily driven by severe halide segregation during the large-scale blade coating process. Here, we introduce 4-aminobenzylphosphonic acid as a functional “2H-imprison” additive that selectively bypasses the formation of the 2H phase (an iodine-rich structure) and promotes the direct crystallization of the desired 3C phase, resulting in a homogeneous phase and halide distribution. Consequently, blade-coated 1.77–electron volt–bandgap perovskite solar cells achieved a power conversion efficiency (PCE) of 20.35% (certified 19.72%) with an open-circuit voltage of 1.35 volts for a ~0.07–square centimeter aperture area, while 1.02–square centimeter devices delivered a PCE of 19.00%. Furthermore, the corresponding blade-coated two- and four-terminal all-perovskite TSCs demonstrated high PCEs of 27.34 and 28.46%, respectively. This study reveals the origins of phase segregation during blade coating and provides a viable strategy to mitigate it, paving the way for scalable and high-efficiency TSCs.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 34\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ady3621\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ady3621\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady3621","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高效全钙钛矿串联太阳能电池(tsc)的可扩展制造仍然具有挑战性,因为宽带隙钙钛矿太阳能电池存在明显的电压缺陷,主要是由大规模叶片涂层过程中严重的卤化物偏析造成的。在这里,我们引入了4-氨基苯基膦酸作为功能性的“2H囚禁”添加剂,选择性地绕过2H相(一种富碘结构)的形成,促进所需3C相的直接结晶,导致相和卤化物分布均匀。因此,叶片涂层的1.77电子伏带隙钙钛矿太阳能电池在开路电压为1.35伏、孔径约为0.07平方厘米的情况下,功率转换效率(PCE)为20.35%(认证为19.72%),而1.02平方厘米器件的PCE为19.00%。此外,叶片包覆的二端和四端全钙钛矿tsc的pce分别为27.34和28.46%。该研究揭示了叶片涂层过程中相偏析的根源,并提供了一种可行的缓解策略,为可扩展和高效的tsc铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Imprisoning 2H intermediate phases in blade-coated wide-bandgap perovskites for efficient all-perovskite tandem solar cells

Imprisoning 2H intermediate phases in blade-coated wide-bandgap perovskites for efficient all-perovskite tandem solar cells
Scalable fabrication of high-efficiency all-perovskite tandem solar cells (TSCs) remains challenging due to notable voltage deficits in wide-bandgap perovskite solar cells, primarily driven by severe halide segregation during the large-scale blade coating process. Here, we introduce 4-aminobenzylphosphonic acid as a functional “2H-imprison” additive that selectively bypasses the formation of the 2H phase (an iodine-rich structure) and promotes the direct crystallization of the desired 3C phase, resulting in a homogeneous phase and halide distribution. Consequently, blade-coated 1.77–electron volt–bandgap perovskite solar cells achieved a power conversion efficiency (PCE) of 20.35% (certified 19.72%) with an open-circuit voltage of 1.35 volts for a ~0.07–square centimeter aperture area, while 1.02–square centimeter devices delivered a PCE of 19.00%. Furthermore, the corresponding blade-coated two- and four-terminal all-perovskite TSCs demonstrated high PCEs of 27.34 and 28.46%, respectively. This study reveals the origins of phase segregation during blade coating and provides a viable strategy to mitigate it, paving the way for scalable and high-efficiency TSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信