{"title":"叶片包覆宽禁带钙钛矿中囚禁2H中间相用于高效全钙钛矿串联太阳能电池","authors":"Dexin Pu, Xuhao Zhang, Hongyi Fang, Weichen Shen, Guoyi Chen, Weiqing Chen, Peng Jia, Guang Li, Hongling Guan, Lishuai Huang, Yuan Zhou, Jiahao Wang, Wenwen Zheng, Weiwei Meng, Guojia Fang, Weijun Ke","doi":"10.1126/sciadv.ady3621","DOIUrl":null,"url":null,"abstract":"<div >Scalable fabrication of high-efficiency all-perovskite tandem solar cells (TSCs) remains challenging due to notable voltage deficits in wide-bandgap perovskite solar cells, primarily driven by severe halide segregation during the large-scale blade coating process. Here, we introduce 4-aminobenzylphosphonic acid as a functional “2H-imprison” additive that selectively bypasses the formation of the 2H phase (an iodine-rich structure) and promotes the direct crystallization of the desired 3C phase, resulting in a homogeneous phase and halide distribution. Consequently, blade-coated 1.77–electron volt–bandgap perovskite solar cells achieved a power conversion efficiency (PCE) of 20.35% (certified 19.72%) with an open-circuit voltage of 1.35 volts for a ~0.07–square centimeter aperture area, while 1.02–square centimeter devices delivered a PCE of 19.00%. Furthermore, the corresponding blade-coated two- and four-terminal all-perovskite TSCs demonstrated high PCEs of 27.34 and 28.46%, respectively. This study reveals the origins of phase segregation during blade coating and provides a viable strategy to mitigate it, paving the way for scalable and high-efficiency TSCs.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 34","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady3621","citationCount":"0","resultStr":"{\"title\":\"Imprisoning 2H intermediate phases in blade-coated wide-bandgap perovskites for efficient all-perovskite tandem solar cells\",\"authors\":\"Dexin Pu, Xuhao Zhang, Hongyi Fang, Weichen Shen, Guoyi Chen, Weiqing Chen, Peng Jia, Guang Li, Hongling Guan, Lishuai Huang, Yuan Zhou, Jiahao Wang, Wenwen Zheng, Weiwei Meng, Guojia Fang, Weijun Ke\",\"doi\":\"10.1126/sciadv.ady3621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Scalable fabrication of high-efficiency all-perovskite tandem solar cells (TSCs) remains challenging due to notable voltage deficits in wide-bandgap perovskite solar cells, primarily driven by severe halide segregation during the large-scale blade coating process. Here, we introduce 4-aminobenzylphosphonic acid as a functional “2H-imprison” additive that selectively bypasses the formation of the 2H phase (an iodine-rich structure) and promotes the direct crystallization of the desired 3C phase, resulting in a homogeneous phase and halide distribution. Consequently, blade-coated 1.77–electron volt–bandgap perovskite solar cells achieved a power conversion efficiency (PCE) of 20.35% (certified 19.72%) with an open-circuit voltage of 1.35 volts for a ~0.07–square centimeter aperture area, while 1.02–square centimeter devices delivered a PCE of 19.00%. Furthermore, the corresponding blade-coated two- and four-terminal all-perovskite TSCs demonstrated high PCEs of 27.34 and 28.46%, respectively. This study reveals the origins of phase segregation during blade coating and provides a viable strategy to mitigate it, paving the way for scalable and high-efficiency TSCs.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 34\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ady3621\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ady3621\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady3621","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Imprisoning 2H intermediate phases in blade-coated wide-bandgap perovskites for efficient all-perovskite tandem solar cells
Scalable fabrication of high-efficiency all-perovskite tandem solar cells (TSCs) remains challenging due to notable voltage deficits in wide-bandgap perovskite solar cells, primarily driven by severe halide segregation during the large-scale blade coating process. Here, we introduce 4-aminobenzylphosphonic acid as a functional “2H-imprison” additive that selectively bypasses the formation of the 2H phase (an iodine-rich structure) and promotes the direct crystallization of the desired 3C phase, resulting in a homogeneous phase and halide distribution. Consequently, blade-coated 1.77–electron volt–bandgap perovskite solar cells achieved a power conversion efficiency (PCE) of 20.35% (certified 19.72%) with an open-circuit voltage of 1.35 volts for a ~0.07–square centimeter aperture area, while 1.02–square centimeter devices delivered a PCE of 19.00%. Furthermore, the corresponding blade-coated two- and four-terminal all-perovskite TSCs demonstrated high PCEs of 27.34 and 28.46%, respectively. This study reveals the origins of phase segregation during blade coating and provides a viable strategy to mitigate it, paving the way for scalable and high-efficiency TSCs.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.