磁性微型机器人通过脑分叉的定向给药导航分析

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Pedro G. Alves, Maria Pinto, Rosa Moreira, Derick Sivakumaran, Fabian Landers, Maria Guix, Bradley J. Nelson, Andreas D. Flouris, Salvador Pané, Josep Puigmartí-Luis, Tiago S. Mayor
{"title":"磁性微型机器人通过脑分叉的定向给药导航分析","authors":"Pedro G. Alves,&nbsp;Maria Pinto,&nbsp;Rosa Moreira,&nbsp;Derick Sivakumaran,&nbsp;Fabian Landers,&nbsp;Maria Guix,&nbsp;Bradley J. Nelson,&nbsp;Andreas D. Flouris,&nbsp;Salvador Pané,&nbsp;Josep Puigmartí-Luis,&nbsp;Tiago S. Mayor","doi":"10.1002/aisy.202400993","DOIUrl":null,"url":null,"abstract":"<p>Local administration of thrombolytics in ischemic stroke could accelerate clot lysis and the ensuing reperfusion while minimizing the side effects of systemic administration. Medical microrobots could be injected into the bloodstream and magnetically navigated to the clot for administering the drugs directly to the target. The magnetic manipulation that is required to navigate medical microrobots depends on various parameters such as the microrobots size, the blood velocity, and the imposed magnetic field gradients. Numerical simulation was used to study the motion of magnetically controlled microrobots flowing through representative cerebral bifurcations, for predicting the magnetic gradients required to navigate the microrobots from the injection point until the target location. Upon thorough validation of the model against several independent analytical and experimental results, the model was used to generate maps and predictive equations providing quantitative information on the required magnetic gradients, for different scenarios. The developed maps and predictive equations are crucial to inform the design, operation, and optimization of magnetic navigation systems for healthcare applications.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400993","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Navigation of Magnetic Microrobots through Cerebral Bifurcations for Targeted Drug Delivery\",\"authors\":\"Pedro G. Alves,&nbsp;Maria Pinto,&nbsp;Rosa Moreira,&nbsp;Derick Sivakumaran,&nbsp;Fabian Landers,&nbsp;Maria Guix,&nbsp;Bradley J. Nelson,&nbsp;Andreas D. Flouris,&nbsp;Salvador Pané,&nbsp;Josep Puigmartí-Luis,&nbsp;Tiago S. Mayor\",\"doi\":\"10.1002/aisy.202400993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Local administration of thrombolytics in ischemic stroke could accelerate clot lysis and the ensuing reperfusion while minimizing the side effects of systemic administration. Medical microrobots could be injected into the bloodstream and magnetically navigated to the clot for administering the drugs directly to the target. The magnetic manipulation that is required to navigate medical microrobots depends on various parameters such as the microrobots size, the blood velocity, and the imposed magnetic field gradients. Numerical simulation was used to study the motion of magnetically controlled microrobots flowing through representative cerebral bifurcations, for predicting the magnetic gradients required to navigate the microrobots from the injection point until the target location. Upon thorough validation of the model against several independent analytical and experimental results, the model was used to generate maps and predictive equations providing quantitative information on the required magnetic gradients, for different scenarios. The developed maps and predictive equations are crucial to inform the design, operation, and optimization of magnetic navigation systems for healthcare applications.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400993\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

局部给药溶栓剂可以加速缺血性脑卒中的凝块溶解和随后的再灌注,同时最小化全身给药的副作用。医用微型机器人可以被注射到血液中,并通过磁力导航到血栓处,直接将药物施用到目标部位。导航医疗微型机器人所需的磁操作取决于各种参数,如微型机器人的大小、血液速度和施加的磁场梯度。通过数值模拟研究磁控微机器人在典型脑分叉处的运动,预测微机器人从注射点到目标位置所需的磁梯度。在对几个独立的分析和实验结果对模型进行彻底验证后,该模型用于生成地图和预测方程,提供不同场景所需磁梯度的定量信息。开发的地图和预测方程对于医疗保健应用磁导航系统的设计、操作和优化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of the Navigation of Magnetic Microrobots through Cerebral Bifurcations for Targeted Drug Delivery

Analysis of the Navigation of Magnetic Microrobots through Cerebral Bifurcations for Targeted Drug Delivery

Analysis of the Navigation of Magnetic Microrobots through Cerebral Bifurcations for Targeted Drug Delivery

Analysis of the Navigation of Magnetic Microrobots through Cerebral Bifurcations for Targeted Drug Delivery

Analysis of the Navigation of Magnetic Microrobots through Cerebral Bifurcations for Targeted Drug Delivery

Local administration of thrombolytics in ischemic stroke could accelerate clot lysis and the ensuing reperfusion while minimizing the side effects of systemic administration. Medical microrobots could be injected into the bloodstream and magnetically navigated to the clot for administering the drugs directly to the target. The magnetic manipulation that is required to navigate medical microrobots depends on various parameters such as the microrobots size, the blood velocity, and the imposed magnetic field gradients. Numerical simulation was used to study the motion of magnetically controlled microrobots flowing through representative cerebral bifurcations, for predicting the magnetic gradients required to navigate the microrobots from the injection point until the target location. Upon thorough validation of the model against several independent analytical and experimental results, the model was used to generate maps and predictive equations providing quantitative information on the required magnetic gradients, for different scenarios. The developed maps and predictive equations are crucial to inform the design, operation, and optimization of magnetic navigation systems for healthcare applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信