{"title":"基于软触觉的交叉电流下ROV远程操作","authors":"Joshua Brown, Ildar Farkhatdinov, Michael Jenkin","doi":"10.1002/rob.22533","DOIUrl":null,"url":null,"abstract":"<p>The remote operation of underwater vehicles at depth is complicated by the presence of invisible and unpredictable environmental disturbances such as cross-currents. Communicating the presence of these disturbances to an operator on the surface is made more difficult by the nature of the disturbances and the lack of visible features to highlight in the visual display presented to the operator. Here we explore the use of a novel interactive soft haptic touchpad that utilizes vibration and particle jamming to provide information about the presence and direction of cross-currents to the operator of an ROV (remotely operated vehicle). An in-water experiment using a thruster-based ROV and artificially generated cross-current was performed with nonexpert ROV operators to evaluate the effectiveness of multimodal haptic feedback to communicate complex environmental information during high-risk operations. Advanced haptic displays can signal both the presence of external factors as well as their direction, information that can enhance operational performance as well as reduce operator cognitive load. Using haptic feedback resulted in a statistically significant reduction in cognitive load of 24.3% and an increase in positioning accuracy of 28.3% for novice operators. Deviation from an ideal path was also reduced by 29.5% for experienced operators when using haptic feedback compared to without. While this experiment took place in controlled conditions with a fixed direction cross-current and haptic interface, this approach could be extended to communicate real-time environmental information in real-world unstructured environments.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 6","pages":"2580-2593"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22533","citationCount":"0","resultStr":"{\"title\":\"ROV Teleoperation in the Presence of Cross-Currents Using Soft Haptics\",\"authors\":\"Joshua Brown, Ildar Farkhatdinov, Michael Jenkin\",\"doi\":\"10.1002/rob.22533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The remote operation of underwater vehicles at depth is complicated by the presence of invisible and unpredictable environmental disturbances such as cross-currents. Communicating the presence of these disturbances to an operator on the surface is made more difficult by the nature of the disturbances and the lack of visible features to highlight in the visual display presented to the operator. Here we explore the use of a novel interactive soft haptic touchpad that utilizes vibration and particle jamming to provide information about the presence and direction of cross-currents to the operator of an ROV (remotely operated vehicle). An in-water experiment using a thruster-based ROV and artificially generated cross-current was performed with nonexpert ROV operators to evaluate the effectiveness of multimodal haptic feedback to communicate complex environmental information during high-risk operations. Advanced haptic displays can signal both the presence of external factors as well as their direction, information that can enhance operational performance as well as reduce operator cognitive load. Using haptic feedback resulted in a statistically significant reduction in cognitive load of 24.3% and an increase in positioning accuracy of 28.3% for novice operators. Deviation from an ideal path was also reduced by 29.5% for experienced operators when using haptic feedback compared to without. While this experiment took place in controlled conditions with a fixed direction cross-current and haptic interface, this approach could be extended to communicate real-time environmental information in real-world unstructured environments.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"42 6\",\"pages\":\"2580-2593\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22533\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22533\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22533","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
ROV Teleoperation in the Presence of Cross-Currents Using Soft Haptics
The remote operation of underwater vehicles at depth is complicated by the presence of invisible and unpredictable environmental disturbances such as cross-currents. Communicating the presence of these disturbances to an operator on the surface is made more difficult by the nature of the disturbances and the lack of visible features to highlight in the visual display presented to the operator. Here we explore the use of a novel interactive soft haptic touchpad that utilizes vibration and particle jamming to provide information about the presence and direction of cross-currents to the operator of an ROV (remotely operated vehicle). An in-water experiment using a thruster-based ROV and artificially generated cross-current was performed with nonexpert ROV operators to evaluate the effectiveness of multimodal haptic feedback to communicate complex environmental information during high-risk operations. Advanced haptic displays can signal both the presence of external factors as well as their direction, information that can enhance operational performance as well as reduce operator cognitive load. Using haptic feedback resulted in a statistically significant reduction in cognitive load of 24.3% and an increase in positioning accuracy of 28.3% for novice operators. Deviation from an ideal path was also reduced by 29.5% for experienced operators when using haptic feedback compared to without. While this experiment took place in controlled conditions with a fixed direction cross-current and haptic interface, this approach could be extended to communicate real-time environmental information in real-world unstructured environments.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.