平面阵列超快速二维到达方向估计的深度神经网络模型在多倍频带数字接收机中的应用

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chen Wu, Qi Er Teng, Raffi Fox
{"title":"平面阵列超快速二维到达方向估计的深度神经网络模型在多倍频带数字接收机中的应用","authors":"Chen Wu,&nbsp;Qi Er Teng,&nbsp;Raffi Fox","doi":"10.1049/rsn2.70066","DOIUrl":null,"url":null,"abstract":"<p>This study presents a deep neural network (DNN) model for multi-octave-band direction-finding (MOB-DF) estimation using a broadband DF-array and multi-layer perceptron (MLP). The model leverages randomly placed array elements to generate unique array steering vectors (ASVs) for directions within a cone-shaped field-of-view. By directly linking ASVs and signal frequency to direction via an MLP, it eliminates reliance on the signal covariance matrix, a common component in many 2D neural network-based DF methods. The DNN-based MOB-DF model is structured into sub-bands, each utilising a trained 16 × 1024 MLP. Simulations with 3-, 4-, and 5-element DF models, trained and validated on datasets with signal-to-noise ratios (SNRs) of 10, 20, and 100 dB respectively, reveal several key findings: (1) MLPs trained at 10 dB SNR can achieve better estimation performance across varying SNR levels, where estimation performance is defined as the probability of direction estimation error ≤ 1°. (2) Increasing array elements expands MOB coverage. (3) The 5-element model attains probabilities of 50% and 90% for ≤ 1° estimation errors at approximately −20 and −10 dB SNR respectively within 2–20 GHz. (4) Average prediction time per direction is on the microsecond scale. (5) The model shows resilience to frequency estimation uncertainties.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70066","citationCount":"0","resultStr":"{\"title\":\"Deep Neural Network Model of Ultrafast 2D Direction-of-Arrival Estimation Using Planar Arrays for Multi-Octave-Band Digital Receiver Applications\",\"authors\":\"Chen Wu,&nbsp;Qi Er Teng,&nbsp;Raffi Fox\",\"doi\":\"10.1049/rsn2.70066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a deep neural network (DNN) model for multi-octave-band direction-finding (MOB-DF) estimation using a broadband DF-array and multi-layer perceptron (MLP). The model leverages randomly placed array elements to generate unique array steering vectors (ASVs) for directions within a cone-shaped field-of-view. By directly linking ASVs and signal frequency to direction via an MLP, it eliminates reliance on the signal covariance matrix, a common component in many 2D neural network-based DF methods. The DNN-based MOB-DF model is structured into sub-bands, each utilising a trained 16 × 1024 MLP. Simulations with 3-, 4-, and 5-element DF models, trained and validated on datasets with signal-to-noise ratios (SNRs) of 10, 20, and 100 dB respectively, reveal several key findings: (1) MLPs trained at 10 dB SNR can achieve better estimation performance across varying SNR levels, where estimation performance is defined as the probability of direction estimation error ≤ 1°. (2) Increasing array elements expands MOB coverage. (3) The 5-element model attains probabilities of 50% and 90% for ≤ 1° estimation errors at approximately −20 and −10 dB SNR respectively within 2–20 GHz. (4) Average prediction time per direction is on the microsecond scale. (5) The model shows resilience to frequency estimation uncertainties.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70066\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70066","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于宽带测向阵列和多层感知器(MLP)的多倍频带测向(mobf)估计的深度神经网络(DNN)模型。该模型利用随机放置的阵列元素来生成唯一的阵列转向向量(asv),用于锥形视场内的方向。通过MLP直接将asv和信号频率与方向联系起来,它消除了对信号协方差矩阵的依赖,协方差矩阵是许多基于2D神经网络的DF方法中的常见成分。基于dnn的mobo - df模型被构建成子带,每个子带都使用经过训练的16 × 1024 MLP。在信噪比分别为10、20和100 dB的数据集上,对3元、4元和5元DF模型进行了模拟和验证,揭示了几个关键发现:(1)在不同信噪比水平下,以10 dB信噪比训练的mlp可以获得更好的估计性能,其中估计性能定义为方向估计误差≤1°的概率。(2)增加阵列元素扩大MOB覆盖范围。(3) 5元模型在2-20 GHz范围内,信噪比分别约为- 20和- 10 dB时,估计误差≤1°的概率分别为50%和90%。(4)每方向平均预报时间为微秒级。(5)模型对频率估计的不确定性具有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Neural Network Model of Ultrafast 2D Direction-of-Arrival Estimation Using Planar Arrays for Multi-Octave-Band Digital Receiver Applications

Deep Neural Network Model of Ultrafast 2D Direction-of-Arrival Estimation Using Planar Arrays for Multi-Octave-Band Digital Receiver Applications

Deep Neural Network Model of Ultrafast 2D Direction-of-Arrival Estimation Using Planar Arrays for Multi-Octave-Band Digital Receiver Applications

Deep Neural Network Model of Ultrafast 2D Direction-of-Arrival Estimation Using Planar Arrays for Multi-Octave-Band Digital Receiver Applications

Deep Neural Network Model of Ultrafast 2D Direction-of-Arrival Estimation Using Planar Arrays for Multi-Octave-Band Digital Receiver Applications

Deep Neural Network Model of Ultrafast 2D Direction-of-Arrival Estimation Using Planar Arrays for Multi-Octave-Band Digital Receiver Applications

This study presents a deep neural network (DNN) model for multi-octave-band direction-finding (MOB-DF) estimation using a broadband DF-array and multi-layer perceptron (MLP). The model leverages randomly placed array elements to generate unique array steering vectors (ASVs) for directions within a cone-shaped field-of-view. By directly linking ASVs and signal frequency to direction via an MLP, it eliminates reliance on the signal covariance matrix, a common component in many 2D neural network-based DF methods. The DNN-based MOB-DF model is structured into sub-bands, each utilising a trained 16 × 1024 MLP. Simulations with 3-, 4-, and 5-element DF models, trained and validated on datasets with signal-to-noise ratios (SNRs) of 10, 20, and 100 dB respectively, reveal several key findings: (1) MLPs trained at 10 dB SNR can achieve better estimation performance across varying SNR levels, where estimation performance is defined as the probability of direction estimation error ≤ 1°. (2) Increasing array elements expands MOB coverage. (3) The 5-element model attains probabilities of 50% and 90% for ≤ 1° estimation errors at approximately −20 and −10 dB SNR respectively within 2–20 GHz. (4) Average prediction time per direction is on the microsecond scale. (5) The model shows resilience to frequency estimation uncertainties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信