基于深度学习的大面积接触传感,基于保形Kirigami结构的机器人电子皮肤安全人机交互

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Rui Jiao, Zhengjun Wang, Ruoqin Wang, Qian Xu, Jiacheng Jiang, Boyang Zhang, Simin Yang, Yang Li, Yik Kin Cheung, Fan Shi, Hongyu Yu
{"title":"基于深度学习的大面积接触传感,基于保形Kirigami结构的机器人电子皮肤安全人机交互","authors":"Rui Jiao,&nbsp;Zhengjun Wang,&nbsp;Ruoqin Wang,&nbsp;Qian Xu,&nbsp;Jiacheng Jiang,&nbsp;Boyang Zhang,&nbsp;Simin Yang,&nbsp;Yang Li,&nbsp;Yik Kin Cheung,&nbsp;Fan Shi,&nbsp;Hongyu Yu","doi":"10.1002/aisy.202400903","DOIUrl":null,"url":null,"abstract":"<p>Collaborative robots need to work with people in shared spaces interactively, so a robotic e-skin with large-area contact sensing capability is a crucial technology to ensure human safety. However, realizing real-time contact localization and intensity estimation on a robot body with a large area of continuous and complex surfaces is challenging. Herein, a novel large-area conformal Kirigami structure that can be customized for complex geometries and transform small-area planar sensor arrays into large-area curved conformal e-skin is proposed. This sensor network can effectively detect Lamb/guided wave responses generated by transient hard contact. Additionally, a convolutional neural network-based deep learning algorithm is implemented to decode the features of guided wave signals and predict the contact location and energy intensity on the robot surface. With the deep learning-based method, the accuracy of collision localization can reach 2.85 ± 1.90 mm and the prediction error of collision energy can reach 9.8 × 10<sup>−4</sup> ± 8.9 × 10<sup>−4</sup> J. Demonstrations show that the proposed method can provide real-time on-site contact sensing, providing a promising solution for future intelligent human–robot interaction.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400903","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Based Large-Area Contact Sensing for Safe Human–Robot Interaction Using Conformal Kirigami Structure-Enabled Robotic E-Skin\",\"authors\":\"Rui Jiao,&nbsp;Zhengjun Wang,&nbsp;Ruoqin Wang,&nbsp;Qian Xu,&nbsp;Jiacheng Jiang,&nbsp;Boyang Zhang,&nbsp;Simin Yang,&nbsp;Yang Li,&nbsp;Yik Kin Cheung,&nbsp;Fan Shi,&nbsp;Hongyu Yu\",\"doi\":\"10.1002/aisy.202400903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Collaborative robots need to work with people in shared spaces interactively, so a robotic e-skin with large-area contact sensing capability is a crucial technology to ensure human safety. However, realizing real-time contact localization and intensity estimation on a robot body with a large area of continuous and complex surfaces is challenging. Herein, a novel large-area conformal Kirigami structure that can be customized for complex geometries and transform small-area planar sensor arrays into large-area curved conformal e-skin is proposed. This sensor network can effectively detect Lamb/guided wave responses generated by transient hard contact. Additionally, a convolutional neural network-based deep learning algorithm is implemented to decode the features of guided wave signals and predict the contact location and energy intensity on the robot surface. With the deep learning-based method, the accuracy of collision localization can reach 2.85 ± 1.90 mm and the prediction error of collision energy can reach 9.8 × 10<sup>−4</sup> ± 8.9 × 10<sup>−4</sup> J. Demonstrations show that the proposed method can provide real-time on-site contact sensing, providing a promising solution for future intelligent human–robot interaction.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400903\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

协作机器人需要在共享空间中与人进行交互工作,因此具有大面积接触传感能力的机器人电子皮肤是保障人类安全的关键技术。然而,在具有大面积连续和复杂表面的机器人身上实现实时接触定位和强度估计是一个挑战。在此基础上,提出了一种新型的大面积保形Kirigami结构,该结构可以针对复杂的几何形状进行定制,并将小面积平面传感器阵列转化为大面积弯曲保形电子皮肤。该传感器网络可以有效地检测瞬态硬接触产生的兰姆/导波响应。此外,采用基于卷积神经网络的深度学习算法对导波信号特征进行解码,预测机器人表面的接触位置和能量强度。基于深度学习的碰撞定位精度可达2.85±1.90 mm,碰撞能量预测误差可达9.8 × 10−4±8.9 × 10−4 J。实验结果表明,该方法可以实现实时的现场接触传感,为未来的智能人机交互提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Learning Based Large-Area Contact Sensing for Safe Human–Robot Interaction Using Conformal Kirigami Structure-Enabled Robotic E-Skin

Deep Learning Based Large-Area Contact Sensing for Safe Human–Robot Interaction Using Conformal Kirigami Structure-Enabled Robotic E-Skin

Deep Learning Based Large-Area Contact Sensing for Safe Human–Robot Interaction Using Conformal Kirigami Structure-Enabled Robotic E-Skin

Deep Learning Based Large-Area Contact Sensing for Safe Human–Robot Interaction Using Conformal Kirigami Structure-Enabled Robotic E-Skin

Deep Learning Based Large-Area Contact Sensing for Safe Human–Robot Interaction Using Conformal Kirigami Structure-Enabled Robotic E-Skin

Collaborative robots need to work with people in shared spaces interactively, so a robotic e-skin with large-area contact sensing capability is a crucial technology to ensure human safety. However, realizing real-time contact localization and intensity estimation on a robot body with a large area of continuous and complex surfaces is challenging. Herein, a novel large-area conformal Kirigami structure that can be customized for complex geometries and transform small-area planar sensor arrays into large-area curved conformal e-skin is proposed. This sensor network can effectively detect Lamb/guided wave responses generated by transient hard contact. Additionally, a convolutional neural network-based deep learning algorithm is implemented to decode the features of guided wave signals and predict the contact location and energy intensity on the robot surface. With the deep learning-based method, the accuracy of collision localization can reach 2.85 ± 1.90 mm and the prediction error of collision energy can reach 9.8 × 10−4 ± 8.9 × 10−4 J. Demonstrations show that the proposed method can provide real-time on-site contact sensing, providing a promising solution for future intelligent human–robot interaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信