基于VNet的视网膜成像多疾病检测与图像处理方法的数据生成

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Samad Azimi Abriz, Mansoor Fateh, Fatemeh Jafarinejad, Vahid Abolghasemi
{"title":"基于VNet的视网膜成像多疾病检测与图像处理方法的数据生成","authors":"Samad Azimi Abriz,&nbsp;Mansoor Fateh,&nbsp;Fatemeh Jafarinejad,&nbsp;Vahid Abolghasemi","doi":"10.1002/aisy.202401039","DOIUrl":null,"url":null,"abstract":"<p>Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202401039","citationCount":"0","resultStr":"{\"title\":\"Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation\",\"authors\":\"Samad Azimi Abriz,&nbsp;Mansoor Fateh,&nbsp;Fatemeh Jafarinejad,&nbsp;Vahid Abolghasemi\",\"doi\":\"10.1002/aisy.202401039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202401039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202401039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202401039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习面临着数据有限、梯度消失、高参数计数和长训练时间等挑战。本文解决了两个关键问题:1)眼科学中的数据稀缺性和2)深度网络中的梯度消失。为了克服数据的局限性,提出了一种基于图像处理的数据生成方法,将数据集大小扩大了12倍。这种方法增强了模型训练并防止了过拟合。为了消除梯度,在初始层引入深度神经网络,优化权重更新,从而可以使用更多更深的层。使用视网膜眼底多疾病图像数据库数据集(Grand Challenge网站上提供的有限且不平衡的眼科数据集)验证了所提出的方法。结果显示,与原始数据集相比,模型精度提高了10%,比网站上报告的基准提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation

Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation

Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation

Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation

Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation

Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信