Samad Azimi Abriz, Mansoor Fateh, Fatemeh Jafarinejad, Vahid Abolghasemi
{"title":"基于VNet的视网膜成像多疾病检测与图像处理方法的数据生成","authors":"Samad Azimi Abriz, Mansoor Fateh, Fatemeh Jafarinejad, Vahid Abolghasemi","doi":"10.1002/aisy.202401039","DOIUrl":null,"url":null,"abstract":"<p>Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202401039","citationCount":"0","resultStr":"{\"title\":\"Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation\",\"authors\":\"Samad Azimi Abriz, Mansoor Fateh, Fatemeh Jafarinejad, Vahid Abolghasemi\",\"doi\":\"10.1002/aisy.202401039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202401039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202401039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202401039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation
Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.