合成氧化铁的功率- x工艺

IF 2.5 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Julien Göthel, Armin Franke, Claudia Hain, Olena Volkova
{"title":"合成氧化铁的功率- x工艺","authors":"Julien Göthel,&nbsp;Armin Franke,&nbsp;Claudia Hain,&nbsp;Olena Volkova","doi":"10.1002/srin.202400891","DOIUrl":null,"url":null,"abstract":"<p>Iron oxide redox cycling presents a pathway to integrate electrolytic hydrogen production and storage. Furthermore, utilizing CO<sub>2</sub> with iron-based materials, enables synthesis gas production without noble metal catalysts, exhibiting high thermochemical stability. Experimental data reveals that a hydrogen flow of 0.07 m<sup>3</sup> h<sup>−1</sup> achieves ≈45% reduction. Doubling the H<sub>2</sub> flow enhances reduction by over 20%. Complete reduction necessitates 4.25 times the stoichiometric H<sub>2</sub>; complete oxidation requires 4.29 times stoichiometric CO<sub>2</sub>, with 0.015 m<sup>3</sup> h<sup>−1</sup> CO<sub>2</sub> at 900 °C showing higher efficiency. While H<sub>2</sub> reduction is near-complete across tested binders, CO<sub>2</sub> reoxidation is limited. Notably, a 20% aluminous binder facilitates full oxygen exchange over 20 redox cycles, albeit with gradual kinetic deceleration. The versatility of CO<sub>2</sub> sources allows for the production of sustainable chemicals and fuels, facilitating climate-neutral processes when coupled with green hydrogen. These findings underscore the potential of iron oxide redox chemistry in advancing sustainable energy and chemical synthesis.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202400891","citationCount":"0","resultStr":"{\"title\":\"Power-to-X Processes with Synthetic Iron Oxides\",\"authors\":\"Julien Göthel,&nbsp;Armin Franke,&nbsp;Claudia Hain,&nbsp;Olena Volkova\",\"doi\":\"10.1002/srin.202400891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron oxide redox cycling presents a pathway to integrate electrolytic hydrogen production and storage. Furthermore, utilizing CO<sub>2</sub> with iron-based materials, enables synthesis gas production without noble metal catalysts, exhibiting high thermochemical stability. Experimental data reveals that a hydrogen flow of 0.07 m<sup>3</sup> h<sup>−1</sup> achieves ≈45% reduction. Doubling the H<sub>2</sub> flow enhances reduction by over 20%. Complete reduction necessitates 4.25 times the stoichiometric H<sub>2</sub>; complete oxidation requires 4.29 times stoichiometric CO<sub>2</sub>, with 0.015 m<sup>3</sup> h<sup>−1</sup> CO<sub>2</sub> at 900 °C showing higher efficiency. While H<sub>2</sub> reduction is near-complete across tested binders, CO<sub>2</sub> reoxidation is limited. Notably, a 20% aluminous binder facilitates full oxygen exchange over 20 redox cycles, albeit with gradual kinetic deceleration. The versatility of CO<sub>2</sub> sources allows for the production of sustainable chemicals and fuels, facilitating climate-neutral processes when coupled with green hydrogen. These findings underscore the potential of iron oxide redox chemistry in advancing sustainable energy and chemical synthesis.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"96 8\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202400891\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400891\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400891","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

氧化铁氧化还原循环是一种集电解制氢和储氢于一体的途径。此外,利用二氧化碳与铁基材料,可以在没有贵金属催化剂的情况下生产合成气,表现出很高的热化学稳定性。实验数据表明,0.07 m3 h−1的氢流量可以达到约45%的还原效果。氢气流量增加一倍可使减量超过20%。完全还原需要4.25倍的化学计量量H2;完全氧化需要4.29倍的CO2,在900℃下0.015 m3 h−1 CO2效率更高。虽然H2还原几乎完全通过测试粘合剂,但CO2再氧化是有限的。值得注意的是,20%的铝粘合剂有助于在20个氧化还原循环中进行充分的氧交换,尽管会逐渐发生动力学减速。二氧化碳源的多功能性使可持续化学品和燃料的生产成为可能,与绿色氢相结合,促进气候中性过程。这些发现强调了氧化铁氧化还原化学在推进可持续能源和化学合成方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Power-to-X Processes with Synthetic Iron Oxides

Power-to-X Processes with Synthetic Iron Oxides

Iron oxide redox cycling presents a pathway to integrate electrolytic hydrogen production and storage. Furthermore, utilizing CO2 with iron-based materials, enables synthesis gas production without noble metal catalysts, exhibiting high thermochemical stability. Experimental data reveals that a hydrogen flow of 0.07 m3 h−1 achieves ≈45% reduction. Doubling the H2 flow enhances reduction by over 20%. Complete reduction necessitates 4.25 times the stoichiometric H2; complete oxidation requires 4.29 times stoichiometric CO2, with 0.015 m3 h−1 CO2 at 900 °C showing higher efficiency. While H2 reduction is near-complete across tested binders, CO2 reoxidation is limited. Notably, a 20% aluminous binder facilitates full oxygen exchange over 20 redox cycles, albeit with gradual kinetic deceleration. The versatility of CO2 sources allows for the production of sustainable chemicals and fuels, facilitating climate-neutral processes when coupled with green hydrogen. These findings underscore the potential of iron oxide redox chemistry in advancing sustainable energy and chemical synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信