{"title":"固相升级循环制备超高负载单原子催化剂","authors":"Guanwu Lian, Zefan Du, Yifan Wang, Yelan Xiao, Mengyao Su, Chao Wu, Yucong Huang, Yuansheng Lin, Jingjing Xiong, Yichen Chen, Shibo Xi, Wenguang Tu, Zhigang Zou, Zhongxin Chen","doi":"10.1002/agt2.70052","DOIUrl":null,"url":null,"abstract":"<p>The recovery of valuable transition metals from deactivated catalysts is crucial for alleviating the challenges of resource scarcity and environmental pollution. Guided by AI-powered big data analysis, we identified an important research gap in the sustainable recovery of early transition metals and proposed a solid-phase upcycling strategy to transform waste catalysts into highly valuable single-atom catalysts (SACs). This involves a heat-induced redispersion of metal aggregates into single atoms on the polycrystalline carbon nitride (PCN) support, producing highly active M<sub>1</sub>-PCN SACs up to 20 wt% (M = Cu, Fe, Co, and Ni). Subsequent techno-economic analysis confirms a two-thirds reduction in production cost and greenhouse gas emissions compared to conventional hydrometallurgical and pyrometallurgical processes, thus paving a new path in the development of sustainable technologies for metal recovery.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 8","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70052","citationCount":"0","resultStr":"{\"title\":\"Solid-Phase Upcycling Toward the Production of Ultrahigh-Loading Single-Atom Catalysts\",\"authors\":\"Guanwu Lian, Zefan Du, Yifan Wang, Yelan Xiao, Mengyao Su, Chao Wu, Yucong Huang, Yuansheng Lin, Jingjing Xiong, Yichen Chen, Shibo Xi, Wenguang Tu, Zhigang Zou, Zhongxin Chen\",\"doi\":\"10.1002/agt2.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recovery of valuable transition metals from deactivated catalysts is crucial for alleviating the challenges of resource scarcity and environmental pollution. Guided by AI-powered big data analysis, we identified an important research gap in the sustainable recovery of early transition metals and proposed a solid-phase upcycling strategy to transform waste catalysts into highly valuable single-atom catalysts (SACs). This involves a heat-induced redispersion of metal aggregates into single atoms on the polycrystalline carbon nitride (PCN) support, producing highly active M<sub>1</sub>-PCN SACs up to 20 wt% (M = Cu, Fe, Co, and Ni). Subsequent techno-economic analysis confirms a two-thirds reduction in production cost and greenhouse gas emissions compared to conventional hydrometallurgical and pyrometallurgical processes, thus paving a new path in the development of sustainable technologies for metal recovery.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solid-Phase Upcycling Toward the Production of Ultrahigh-Loading Single-Atom Catalysts
The recovery of valuable transition metals from deactivated catalysts is crucial for alleviating the challenges of resource scarcity and environmental pollution. Guided by AI-powered big data analysis, we identified an important research gap in the sustainable recovery of early transition metals and proposed a solid-phase upcycling strategy to transform waste catalysts into highly valuable single-atom catalysts (SACs). This involves a heat-induced redispersion of metal aggregates into single atoms on the polycrystalline carbon nitride (PCN) support, producing highly active M1-PCN SACs up to 20 wt% (M = Cu, Fe, Co, and Ni). Subsequent techno-economic analysis confirms a two-thirds reduction in production cost and greenhouse gas emissions compared to conventional hydrometallurgical and pyrometallurgical processes, thus paving a new path in the development of sustainable technologies for metal recovery.