无人机协同空战机动决策的独立软评价深度强化学习

IF 5.2 2区 计算机科学 Q2 ROBOTICS
Haolin Li, Delin Luo, Haibin Duan
{"title":"无人机协同空战机动决策的独立软评价深度强化学习","authors":"Haolin Li,&nbsp;Delin Luo,&nbsp;Haibin Duan","doi":"10.1002/rob.22538","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper delves into the research of collaborative combat strategies for multiple unmanned combat aerial vehicles (UAVs), utilizing the independent soft Actor-Critic (is-AC) algorithm. We aim to achieve collaborative jamming confrontation, accurate battlefield situational awareness, and UAV decision-making capabilities to control their behavior. However, the SAC algorithm is plagued by instability and poor scalability in Multi-agent reinforcement learning scenarios. To address this, we draw inspiration from the Independent Q-Learning (IQL) algorithm and improve SAC. Our experimental analysis of the is-AC algorithm in UAV confrontation models demonstrates its stability and scalability in multi-machine scenarios.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 6","pages":"2656-2670"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independent Soft Actor-Critic Deep Reinforcement Learning for UAV Cooperative Air Combat Maneuvering Decision-Making\",\"authors\":\"Haolin Li,&nbsp;Delin Luo,&nbsp;Haibin Duan\",\"doi\":\"10.1002/rob.22538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper delves into the research of collaborative combat strategies for multiple unmanned combat aerial vehicles (UAVs), utilizing the independent soft Actor-Critic (is-AC) algorithm. We aim to achieve collaborative jamming confrontation, accurate battlefield situational awareness, and UAV decision-making capabilities to control their behavior. However, the SAC algorithm is plagued by instability and poor scalability in Multi-agent reinforcement learning scenarios. To address this, we draw inspiration from the Independent Q-Learning (IQL) algorithm and improve SAC. Our experimental analysis of the is-AC algorithm in UAV confrontation models demonstrates its stability and scalability in multi-machine scenarios.</p>\\n </div>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"42 6\",\"pages\":\"2656-2670\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22538\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22538","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

利用独立软Actor-Critic (is-AC)算法,对多架无人机协同作战策略进行了深入研究。我们的目标是实现协同干扰对抗、精确战场态势感知和无人机决策能力以控制其行为。然而,SAC算法在多智能体强化学习场景中存在不稳定性和可扩展性差的问题。为了解决这个问题,我们从独立Q-Learning (IQL)算法中汲取灵感并改进SAC。对无人机对抗模型中的is-AC算法进行了实验分析,验证了该算法在多机场景下的稳定性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent Soft Actor-Critic Deep Reinforcement Learning for UAV Cooperative Air Combat Maneuvering Decision-Making

This paper delves into the research of collaborative combat strategies for multiple unmanned combat aerial vehicles (UAVs), utilizing the independent soft Actor-Critic (is-AC) algorithm. We aim to achieve collaborative jamming confrontation, accurate battlefield situational awareness, and UAV decision-making capabilities to control their behavior. However, the SAC algorithm is plagued by instability and poor scalability in Multi-agent reinforcement learning scenarios. To address this, we draw inspiration from the Independent Q-Learning (IQL) algorithm and improve SAC. Our experimental analysis of the is-AC algorithm in UAV confrontation models demonstrates its stability and scalability in multi-machine scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信