锂硫电池中与电解质相关的电极电位

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Fritz Wortelkamp, Christian Wittekind, Lilli Busch, Ingo Krossing
{"title":"锂硫电池中与电解质相关的电极电位","authors":"Fritz Wortelkamp,&nbsp;Christian Wittekind,&nbsp;Lilli Busch,&nbsp;Ingo Krossing","doi":"10.1002/celc.202500109","DOIUrl":null,"url":null,"abstract":"<p>Lithium–sulfur batteries are promising for future energy storage due to their high specific capacity. However, challenges like low cycling stability and the shuttle effect hinder their practical use. A better understanding of the underlying processes is crucial. This study examines the correlation between lithium potential (<i>E</i><sub>Li</sub>) and sulfur reaction potentials, referenced against the ferrocenium/ferrocene couple as an (almost) solvent-independent reference. Sulfur reactions are divided into two main stages during discharge and charge. Most sulfur reactions show a good linear correlation with <i>E</i><sub>Li</sub> (R<sup>2</sup> up to 0.87), except for the initial reduction of S<sub>8</sub> to Li<sub>2</sub>S<sub>8</sub>, which shows no significant correlation. This suggests electrolyte design should address individual sulfur reactions rather than treating them collectively. Additionally, the correlation between <i>E</i><sub>Li</sub> and the Raman-active symmetric S–N–S stretching mode <i>v</i><sub>s</sub>(SNS) in the Li[N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>] electrolyte anion is analyzed across different electrolyte mixtures. A good linear correlation (R<sup>2</sup> = 0.73) indicates that both the Raman peak position and <i>E</i><sub>Li</sub> reflect the strength of the interaction between Li<sup>+</sup> and the electrolyte solvent and hence the Li<sup>+</sup> ion activity. These findings provide valuable insights for optimizing lithium–sulfur battery electrolytes.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 16","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500109","citationCount":"0","resultStr":"{\"title\":\"Electrolyte-Dependent Electrode Potentials in Lithium–Sulfur Batteries\",\"authors\":\"Fritz Wortelkamp,&nbsp;Christian Wittekind,&nbsp;Lilli Busch,&nbsp;Ingo Krossing\",\"doi\":\"10.1002/celc.202500109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium–sulfur batteries are promising for future energy storage due to their high specific capacity. However, challenges like low cycling stability and the shuttle effect hinder their practical use. A better understanding of the underlying processes is crucial. This study examines the correlation between lithium potential (<i>E</i><sub>Li</sub>) and sulfur reaction potentials, referenced against the ferrocenium/ferrocene couple as an (almost) solvent-independent reference. Sulfur reactions are divided into two main stages during discharge and charge. Most sulfur reactions show a good linear correlation with <i>E</i><sub>Li</sub> (R<sup>2</sup> up to 0.87), except for the initial reduction of S<sub>8</sub> to Li<sub>2</sub>S<sub>8</sub>, which shows no significant correlation. This suggests electrolyte design should address individual sulfur reactions rather than treating them collectively. Additionally, the correlation between <i>E</i><sub>Li</sub> and the Raman-active symmetric S–N–S stretching mode <i>v</i><sub>s</sub>(SNS) in the Li[N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>] electrolyte anion is analyzed across different electrolyte mixtures. A good linear correlation (R<sup>2</sup> = 0.73) indicates that both the Raman peak position and <i>E</i><sub>Li</sub> reflect the strength of the interaction between Li<sup>+</sup> and the electrolyte solvent and hence the Li<sup>+</sup> ion activity. These findings provide valuable insights for optimizing lithium–sulfur battery electrolytes.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500109\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500109","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池由于其高比容量,在未来的能源存储中很有前景。然而,低循环稳定性和穿梭效应等挑战阻碍了它们的实际应用。更好地理解潜在的过程是至关重要的。本研究考察了锂电位(ELi)和硫反应电位之间的相关性,参考了二茂铁/二茂铁偶对作为(几乎)不依赖于溶剂的参考。硫反应分为放电和充电两个主要阶段。除S8初始还原为Li2S8外,大多数硫反应与ELi呈良好的线性相关(R2达0.87)。这表明电解质设计应该针对单个硫反应,而不是对它们进行集体处理。此外,分析了Li[N(SO2CF3)2]电解质阴离子中ELi与拉曼活性对称S-N-S拉伸模式vs(SNS)之间的相关性。线性关系良好(R2 = 0.73),表明拉曼峰位置和ELi都反映了Li+与电解质溶剂相互作用的强度,从而反映了Li+离子的活性。这些发现为优化锂硫电池电解质提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrolyte-Dependent Electrode Potentials in Lithium–Sulfur Batteries

Electrolyte-Dependent Electrode Potentials in Lithium–Sulfur Batteries

Electrolyte-Dependent Electrode Potentials in Lithium–Sulfur Batteries

Electrolyte-Dependent Electrode Potentials in Lithium–Sulfur Batteries

Lithium–sulfur batteries are promising for future energy storage due to their high specific capacity. However, challenges like low cycling stability and the shuttle effect hinder their practical use. A better understanding of the underlying processes is crucial. This study examines the correlation between lithium potential (ELi) and sulfur reaction potentials, referenced against the ferrocenium/ferrocene couple as an (almost) solvent-independent reference. Sulfur reactions are divided into two main stages during discharge and charge. Most sulfur reactions show a good linear correlation with ELi (R2 up to 0.87), except for the initial reduction of S8 to Li2S8, which shows no significant correlation. This suggests electrolyte design should address individual sulfur reactions rather than treating them collectively. Additionally, the correlation between ELi and the Raman-active symmetric S–N–S stretching mode vs(SNS) in the Li[N(SO2CF3)2] electrolyte anion is analyzed across different electrolyte mixtures. A good linear correlation (R2 = 0.73) indicates that both the Raman peak position and ELi reflect the strength of the interaction between Li+ and the electrolyte solvent and hence the Li+ ion activity. These findings provide valuable insights for optimizing lithium–sulfur battery electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信