{"title":"用散射振幅探测迈尔斯-佩里黑洞的多极结构","authors":"Massimo Bianchi, Claudio Gambino, Fabio Riccioni, Vincenzo Zevola","doi":"10.1007/JHEP08(2025)151","DOIUrl":null,"url":null,"abstract":"<p>We discuss the scattering of massive scalar probes off Myers-Perry black holes in the Kerr-Schild gauge. Extending the analysis performed recently for Kerr(-Newman) black holes, we show that the Kerr-Schild gauge allows to write down the tree-level scattering amplitude for Myers-Perry black holes in analytic form. For generic values of the angular momenta, Myers-Perry solutions have a richer multipolar structure compared to their four-dimensional counterparts, because they are characterized by the presence of stress multipoles, together with the more familiar mass and current multipoles. By focusing on the five-dimensional case, we derive the leading eikonal phase from the scattering amplitude and we give an explicit expression for two limiting scenari, namely when the two angular momenta are the same, so that the mass multipoles vanish but still the solution has a non-vanishing stress quadrupole and a current dipole, and when one of the two angular momenta is zero, and correspondingly the stress multipoles vanish similar to the Kerr case.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)151.pdf","citationCount":"0","resultStr":"{\"title\":\"Probing the multipolar structure of Myers-Perry black holes with scattering amplitudes\",\"authors\":\"Massimo Bianchi, Claudio Gambino, Fabio Riccioni, Vincenzo Zevola\",\"doi\":\"10.1007/JHEP08(2025)151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss the scattering of massive scalar probes off Myers-Perry black holes in the Kerr-Schild gauge. Extending the analysis performed recently for Kerr(-Newman) black holes, we show that the Kerr-Schild gauge allows to write down the tree-level scattering amplitude for Myers-Perry black holes in analytic form. For generic values of the angular momenta, Myers-Perry solutions have a richer multipolar structure compared to their four-dimensional counterparts, because they are characterized by the presence of stress multipoles, together with the more familiar mass and current multipoles. By focusing on the five-dimensional case, we derive the leading eikonal phase from the scattering amplitude and we give an explicit expression for two limiting scenari, namely when the two angular momenta are the same, so that the mass multipoles vanish but still the solution has a non-vanishing stress quadrupole and a current dipole, and when one of the two angular momenta is zero, and correspondingly the stress multipoles vanish similar to the Kerr case.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)151.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP08(2025)151\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP08(2025)151","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Probing the multipolar structure of Myers-Perry black holes with scattering amplitudes
We discuss the scattering of massive scalar probes off Myers-Perry black holes in the Kerr-Schild gauge. Extending the analysis performed recently for Kerr(-Newman) black holes, we show that the Kerr-Schild gauge allows to write down the tree-level scattering amplitude for Myers-Perry black holes in analytic form. For generic values of the angular momenta, Myers-Perry solutions have a richer multipolar structure compared to their four-dimensional counterparts, because they are characterized by the presence of stress multipoles, together with the more familiar mass and current multipoles. By focusing on the five-dimensional case, we derive the leading eikonal phase from the scattering amplitude and we give an explicit expression for two limiting scenari, namely when the two angular momenta are the same, so that the mass multipoles vanish but still the solution has a non-vanishing stress quadrupole and a current dipole, and when one of the two angular momenta is zero, and correspondingly the stress multipoles vanish similar to the Kerr case.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).