来自五维膨胀的双谱

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Ignatios Antoniadis, Auttakit Chatrabhuti, Jules Cunat, Hiroshi Isono
{"title":"来自五维膨胀的双谱","authors":"Ignatios Antoniadis,&nbsp;Auttakit Chatrabhuti,&nbsp;Jules Cunat,&nbsp;Hiroshi Isono","doi":"10.1007/JHEP08(2025)163","DOIUrl":null,"url":null,"abstract":"<p>It was proposed that five-dimensional (5D) inflation can blow up the size of a compact dimension from the 5D Planck length to the micron size, as required by the dark dimension proposal, relating the weakness of the actual gravitational force to the size of the observable universe. Moreover, it was shown that 5D inflation can generate the (approximate) flat power spectrum of primordial density fluctuations consistent with present observations. Here we compute the bispectrum of primordial scalar perturbations and show that unlike the power spectrum, it differs from the four-dimensional case at all angular distances, due to the fact that in contrast to global dilatations, invariance under special conformal transformations is not restored at late times. Moreover there is an additional enhancement in the squeezed limit.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)163.pdf","citationCount":"0","resultStr":"{\"title\":\"Bispectrum from five-dimensional inflation\",\"authors\":\"Ignatios Antoniadis,&nbsp;Auttakit Chatrabhuti,&nbsp;Jules Cunat,&nbsp;Hiroshi Isono\",\"doi\":\"10.1007/JHEP08(2025)163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It was proposed that five-dimensional (5D) inflation can blow up the size of a compact dimension from the 5D Planck length to the micron size, as required by the dark dimension proposal, relating the weakness of the actual gravitational force to the size of the observable universe. Moreover, it was shown that 5D inflation can generate the (approximate) flat power spectrum of primordial density fluctuations consistent with present observations. Here we compute the bispectrum of primordial scalar perturbations and show that unlike the power spectrum, it differs from the four-dimensional case at all angular distances, due to the fact that in contrast to global dilatations, invariance under special conformal transformations is not restored at late times. Moreover there is an additional enhancement in the squeezed limit.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)163.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP08(2025)163\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP08(2025)163","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

有人提出,五维(5D)暴胀可以将紧凑维度的大小从5D普朗克长度膨胀到微米大小,这是暗维度提议所要求的,将实际引力的弱点与可观测宇宙的大小联系起来。此外,5D暴胀可以产生与目前观测一致的(近似)平坦的原始密度波动功率谱。在这里,我们计算了原始标量扰动的双谱,并表明与功率谱不同,它在所有角距离上都不同于四维情况,因为与全局膨胀相反,特殊保形变换下的不变性在晚时间不会恢复。此外,在挤压极限中还有一个额外的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bispectrum from five-dimensional inflation

It was proposed that five-dimensional (5D) inflation can blow up the size of a compact dimension from the 5D Planck length to the micron size, as required by the dark dimension proposal, relating the weakness of the actual gravitational force to the size of the observable universe. Moreover, it was shown that 5D inflation can generate the (approximate) flat power spectrum of primordial density fluctuations consistent with present observations. Here we compute the bispectrum of primordial scalar perturbations and show that unlike the power spectrum, it differs from the four-dimensional case at all angular distances, due to the fact that in contrast to global dilatations, invariance under special conformal transformations is not restored at late times. Moreover there is an additional enhancement in the squeezed limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信