{"title":"高能散射的Born-Oppenheimer重整化群:建立与波函数","authors":"Haowu Duan, Alex Kovner, Michael Lublinsky","doi":"10.1007/JHEP08(2025)136","DOIUrl":null,"url":null,"abstract":"<p>We develop an approach to QCD evolution based on the sequential Born-Oppenheimer approximations that include higher and higher frequency modes as the evolution parameter is increased. This Born-Oppenheimer renormalization group is a general approach which is valid for the high energy evolution as well as the evolution in transverse resolution scale <i>Q</i><sup>2</sup>. In the former case it yields the frequency ordered formulation of high energy evolution, which includes both the eikonal splittings which produce gluons with low longitudinal momentum, and the DGLAP-like splittings which produce partons with high transverse momentum. In this, first paper of the series we lay out the formulation of the approach, and derive the expression for the evolved wave function of a hadronic state. We also discuss the form of the <i>S</i>-matrix which is consistent with the frequency ordeing.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)136.pdf","citationCount":"0","resultStr":"{\"title\":\"Born-Oppenheimer renormalization group for high energy scattering: the setup and the wave function\",\"authors\":\"Haowu Duan, Alex Kovner, Michael Lublinsky\",\"doi\":\"10.1007/JHEP08(2025)136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop an approach to QCD evolution based on the sequential Born-Oppenheimer approximations that include higher and higher frequency modes as the evolution parameter is increased. This Born-Oppenheimer renormalization group is a general approach which is valid for the high energy evolution as well as the evolution in transverse resolution scale <i>Q</i><sup>2</sup>. In the former case it yields the frequency ordered formulation of high energy evolution, which includes both the eikonal splittings which produce gluons with low longitudinal momentum, and the DGLAP-like splittings which produce partons with high transverse momentum. In this, first paper of the series we lay out the formulation of the approach, and derive the expression for the evolved wave function of a hadronic state. We also discuss the form of the <i>S</i>-matrix which is consistent with the frequency ordeing.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)136.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP08(2025)136\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP08(2025)136","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Born-Oppenheimer renormalization group for high energy scattering: the setup and the wave function
We develop an approach to QCD evolution based on the sequential Born-Oppenheimer approximations that include higher and higher frequency modes as the evolution parameter is increased. This Born-Oppenheimer renormalization group is a general approach which is valid for the high energy evolution as well as the evolution in transverse resolution scale Q2. In the former case it yields the frequency ordered formulation of high energy evolution, which includes both the eikonal splittings which produce gluons with low longitudinal momentum, and the DGLAP-like splittings which produce partons with high transverse momentum. In this, first paper of the series we lay out the formulation of the approach, and derive the expression for the evolved wave function of a hadronic state. We also discuss the form of the S-matrix which is consistent with the frequency ordeing.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).