介孔TiO2纳米限制MoS2量子点:电化学微塑性传感的高性能平台

IF 3.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Rima Heider Al Omari, Shelesh Krishna Saraswat, Abhinav Kumar, Subbulakshmi Ganesan, Shaker Mohammed, Aashna Sinha, Hadi Noorizadeh and Mosstafa Kazemi
{"title":"介孔TiO2纳米限制MoS2量子点:电化学微塑性传感的高性能平台","authors":"Rima Heider Al Omari, Shelesh Krishna Saraswat, Abhinav Kumar, Subbulakshmi Ganesan, Shaker Mohammed, Aashna Sinha, Hadi Noorizadeh and Mosstafa Kazemi","doi":"10.1039/D5EW00454C","DOIUrl":null,"url":null,"abstract":"<p >The increasing prevalence of microplastic pollution in aquatic environments necessitates the development of sensitive, selective, and rapid detection platforms. Herein, we report the fabrication of a high-performance electrochemical sensor based on nanoconfined MoS<small><sub>2</sub></small> quantum dots (QDs) integrated into a mesoporous TiO<small><sub>2</sub></small> matrix. The hybrid nanocomposite was synthesized <em>via</em> a template-assisted sol–gel strategy, ensuring uniform dispersion and confinement of MoS<small><sub>2</sub></small> QDs (3–6 nm) within TiO<small><sub>2</sub></small> mesopores (∼3.5 nm). Structural and morphological analyses confirmed the formation of a highly porous, crystalline framework with preserved mesostructure and enhanced surface area. Electrochemical characterization demonstrated significantly improved redox activity and charge transfer kinetics due to synergistic interactions between the quantum-confined MoS<small><sub>2</sub></small> domains and the conductive TiO<small><sub>2</sub></small> scaffold. The modified glassy carbon electrodes exhibited excellent sensitivity toward polystyrene (PS) and polypropylene (PP) microplastics across a wide dynamic range (10<small><sup>4</sup></small>–10<small><sup>10</sup></small> particles per mL), with a limit of detection of 5.0 × 10<small><sup>3</sup></small> particles per mL. The sensor showed strong selectivity against various ionic and organic interferents, and maintained high analytical performance in complex matrices including seawater, tap water, and simulated environmental samples. Reproducibility and long-term stability were also validated under varying storage conditions. These results highlight the promise of the MoS<small><sub>2</sub></small> QD/TiO<small><sub>2</sub></small> nanoplatform as a scalable and robust electrochemical system for real-time monitoring of microplastic contaminants in environmental waters.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 9","pages":" 2192-2210"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoconfined MoS2 quantum dots in mesoporous TiO2: a high-performance platform for electrochemical microplastic sensing\",\"authors\":\"Rima Heider Al Omari, Shelesh Krishna Saraswat, Abhinav Kumar, Subbulakshmi Ganesan, Shaker Mohammed, Aashna Sinha, Hadi Noorizadeh and Mosstafa Kazemi\",\"doi\":\"10.1039/D5EW00454C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing prevalence of microplastic pollution in aquatic environments necessitates the development of sensitive, selective, and rapid detection platforms. Herein, we report the fabrication of a high-performance electrochemical sensor based on nanoconfined MoS<small><sub>2</sub></small> quantum dots (QDs) integrated into a mesoporous TiO<small><sub>2</sub></small> matrix. The hybrid nanocomposite was synthesized <em>via</em> a template-assisted sol–gel strategy, ensuring uniform dispersion and confinement of MoS<small><sub>2</sub></small> QDs (3–6 nm) within TiO<small><sub>2</sub></small> mesopores (∼3.5 nm). Structural and morphological analyses confirmed the formation of a highly porous, crystalline framework with preserved mesostructure and enhanced surface area. Electrochemical characterization demonstrated significantly improved redox activity and charge transfer kinetics due to synergistic interactions between the quantum-confined MoS<small><sub>2</sub></small> domains and the conductive TiO<small><sub>2</sub></small> scaffold. The modified glassy carbon electrodes exhibited excellent sensitivity toward polystyrene (PS) and polypropylene (PP) microplastics across a wide dynamic range (10<small><sup>4</sup></small>–10<small><sup>10</sup></small> particles per mL), with a limit of detection of 5.0 × 10<small><sup>3</sup></small> particles per mL. The sensor showed strong selectivity against various ionic and organic interferents, and maintained high analytical performance in complex matrices including seawater, tap water, and simulated environmental samples. Reproducibility and long-term stability were also validated under varying storage conditions. These results highlight the promise of the MoS<small><sub>2</sub></small> QD/TiO<small><sub>2</sub></small> nanoplatform as a scalable and robust electrochemical system for real-time monitoring of microplastic contaminants in environmental waters.</p>\",\"PeriodicalId\":75,\"journal\":{\"name\":\"Environmental Science: Water Research & Technology\",\"volume\":\" 9\",\"pages\":\" 2192-2210\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Water Research & Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d5ew00454c\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d5ew00454c","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

水生环境中微塑料污染的日益普遍要求开发灵敏、选择性和快速的检测平台。在此,我们报道了一种基于纳米限制MoS2量子点(QDs)集成到介孔TiO2基质中的高性能电化学传感器的制造。该杂化纳米复合材料通过模板辅助溶胶-凝胶策略合成,确保了MoS2量子点(3-6 nm)在TiO2介孔(~ 3.5 nm)内均匀分散和约束。结构和形态分析证实形成了一个高度多孔的晶体框架,具有保留的介观结构和增强的表面积。电化学表征表明,由于量子受限的MoS2结构域和导电TiO2支架之间的协同作用,氧化还原活性和电荷转移动力学得到了显著改善。改性玻璃碳电极对聚苯乙烯(PS)和聚丙烯(PP)微塑料在宽动态范围内(104-1010个粒子/ mL)表现出优异的灵敏度,检测限为5.0 × 103个粒子/ mL。该传感器对各种离子和有机干扰具有很强的选择性,在包括海水、自来水和模拟环境样品在内的复杂基质中保持较高的分析性能。在不同的储存条件下也验证了重现性和长期稳定性。这些结果突出了MoS2 QD/TiO2纳米平台作为一种可扩展且强大的电化学系统的前景,可用于实时监测环境水中的微塑料污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoconfined MoS2 quantum dots in mesoporous TiO2: a high-performance platform for electrochemical microplastic sensing

Nanoconfined MoS2 quantum dots in mesoporous TiO2: a high-performance platform for electrochemical microplastic sensing

The increasing prevalence of microplastic pollution in aquatic environments necessitates the development of sensitive, selective, and rapid detection platforms. Herein, we report the fabrication of a high-performance electrochemical sensor based on nanoconfined MoS2 quantum dots (QDs) integrated into a mesoporous TiO2 matrix. The hybrid nanocomposite was synthesized via a template-assisted sol–gel strategy, ensuring uniform dispersion and confinement of MoS2 QDs (3–6 nm) within TiO2 mesopores (∼3.5 nm). Structural and morphological analyses confirmed the formation of a highly porous, crystalline framework with preserved mesostructure and enhanced surface area. Electrochemical characterization demonstrated significantly improved redox activity and charge transfer kinetics due to synergistic interactions between the quantum-confined MoS2 domains and the conductive TiO2 scaffold. The modified glassy carbon electrodes exhibited excellent sensitivity toward polystyrene (PS) and polypropylene (PP) microplastics across a wide dynamic range (104–1010 particles per mL), with a limit of detection of 5.0 × 103 particles per mL. The sensor showed strong selectivity against various ionic and organic interferents, and maintained high analytical performance in complex matrices including seawater, tap water, and simulated environmental samples. Reproducibility and long-term stability were also validated under varying storage conditions. These results highlight the promise of the MoS2 QD/TiO2 nanoplatform as a scalable and robust electrochemical system for real-time monitoring of microplastic contaminants in environmental waters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信