{"title":"考虑对能效有害的LLM混合专家权重的SSD卸载","authors":"Kwanhee Kyung;Sungmin Yun;Jung Ho Ahn","doi":"10.1109/LCA.2025.3592563","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) applying Mixture-of-Experts (MoE) scale to trillions of parameters but require vast memory, motivating a line of research to offload expert weights from fast-but-small DRAM (HBM) to denser Flash SSDs. While SSDs provide cost-effective capacity, their read energy per bit is substantially higher than that of DRAM. This paper quantitatively analyzes the energy implications of offloading MoE expert weights to SSDs during the critical decode stage of LLM inference. Our analysis, comparing SSD, CPU memory (DDR), and HBM storage scenarios for models like DeepSeek-R1, reveals that offloading MoE weights to current SSDs drastically increases per-token-generation energy consumption (e.g., by up to <inline-formula><tex-math>$\\sim 12\\times$</tex-math></inline-formula> compared to the HBM baseline), dominating the total inference energy budget. Although techniques like prefetching effectively hide access latency, they cannot mitigate this fundamental energy penalty. We further explore future technological scaling, finding that the inherent sparsity of MoE models could potentially make SSDs energy-viable <i>if</i> Flash read energy improves significantly, roughly by an order of magnitude.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"265-268"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SSD Offloading for LLM Mixture-of-Experts Weights Considered Harmful in Energy Efficiency\",\"authors\":\"Kwanhee Kyung;Sungmin Yun;Jung Ho Ahn\",\"doi\":\"10.1109/LCA.2025.3592563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) applying Mixture-of-Experts (MoE) scale to trillions of parameters but require vast memory, motivating a line of research to offload expert weights from fast-but-small DRAM (HBM) to denser Flash SSDs. While SSDs provide cost-effective capacity, their read energy per bit is substantially higher than that of DRAM. This paper quantitatively analyzes the energy implications of offloading MoE expert weights to SSDs during the critical decode stage of LLM inference. Our analysis, comparing SSD, CPU memory (DDR), and HBM storage scenarios for models like DeepSeek-R1, reveals that offloading MoE weights to current SSDs drastically increases per-token-generation energy consumption (e.g., by up to <inline-formula><tex-math>$\\\\sim 12\\\\times$</tex-math></inline-formula> compared to the HBM baseline), dominating the total inference energy budget. Although techniques like prefetching effectively hide access latency, they cannot mitigate this fundamental energy penalty. We further explore future technological scaling, finding that the inherent sparsity of MoE models could potentially make SSDs energy-viable <i>if</i> Flash read energy improves significantly, roughly by an order of magnitude.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"24 2\",\"pages\":\"265-268\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11095626/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11095626/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
SSD Offloading for LLM Mixture-of-Experts Weights Considered Harmful in Energy Efficiency
Large Language Models (LLMs) applying Mixture-of-Experts (MoE) scale to trillions of parameters but require vast memory, motivating a line of research to offload expert weights from fast-but-small DRAM (HBM) to denser Flash SSDs. While SSDs provide cost-effective capacity, their read energy per bit is substantially higher than that of DRAM. This paper quantitatively analyzes the energy implications of offloading MoE expert weights to SSDs during the critical decode stage of LLM inference. Our analysis, comparing SSD, CPU memory (DDR), and HBM storage scenarios for models like DeepSeek-R1, reveals that offloading MoE weights to current SSDs drastically increases per-token-generation energy consumption (e.g., by up to $\sim 12\times$ compared to the HBM baseline), dominating the total inference energy budget. Although techniques like prefetching effectively hide access latency, they cannot mitigate this fundamental energy penalty. We further explore future technological scaling, finding that the inherent sparsity of MoE models could potentially make SSDs energy-viable if Flash read energy improves significantly, roughly by an order of magnitude.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.