{"title":"月球铁斜长岩Rb-Sr分系统揭示的月球年龄和早期演化","authors":"Jonas M. Schneider , Thorsten Kleine","doi":"10.1016/j.epsl.2025.119592","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of the Moon by a giant impact of an object called Theia onto proto-Earth marks the end of the main stage of Earth’s accretion. However, the timing of this event is controversial, with estimates ranging between ∼50 and ∼220 million years (Ma) after solar system formation. The <sup>87</sup>Rb-<sup>87</sup>Sr system has the potential to resolve this debate, as formation of the Moon resulted in strong fractionation of rubidium from strontium. To better determine the initial <sup>87</sup>Sr/<sup>86</sup>Sr of the Moon, we obtained Rb-Sr isotope data for several lunar ferroan anorthosites, which define an initial <sup>87</sup>Sr/<sup>86</sup>Sr of 0.6990608±0.0000005 (2 s.e.) at 4.360±0.003 Ga. Modeling the pre-giant impact Rb-Sr isotopic evolution of Theia and the proto-Earth reveals that while in the canonical giant impact model no Rb-Sr model age can be determined, all other current impact models yield a Moon formation age of 4.502±0.020 Ga, or 65±20 Ma after solar system formation. When compared to the chronology of lunar samples, this age implies that solidication of the lunar magma ocean took ∼70 Ma, and that the Moon underwent a global re-melting event ∼150 Ma after its formation.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"669 ","pages":"Article 119592"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The age and early evolution of the Moon revealed by the Rb-Sr systematics of lunar ferroan anorthosites\",\"authors\":\"Jonas M. Schneider , Thorsten Kleine\",\"doi\":\"10.1016/j.epsl.2025.119592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The formation of the Moon by a giant impact of an object called Theia onto proto-Earth marks the end of the main stage of Earth’s accretion. However, the timing of this event is controversial, with estimates ranging between ∼50 and ∼220 million years (Ma) after solar system formation. The <sup>87</sup>Rb-<sup>87</sup>Sr system has the potential to resolve this debate, as formation of the Moon resulted in strong fractionation of rubidium from strontium. To better determine the initial <sup>87</sup>Sr/<sup>86</sup>Sr of the Moon, we obtained Rb-Sr isotope data for several lunar ferroan anorthosites, which define an initial <sup>87</sup>Sr/<sup>86</sup>Sr of 0.6990608±0.0000005 (2 s.e.) at 4.360±0.003 Ga. Modeling the pre-giant impact Rb-Sr isotopic evolution of Theia and the proto-Earth reveals that while in the canonical giant impact model no Rb-Sr model age can be determined, all other current impact models yield a Moon formation age of 4.502±0.020 Ga, or 65±20 Ma after solar system formation. When compared to the chronology of lunar samples, this age implies that solidication of the lunar magma ocean took ∼70 Ma, and that the Moon underwent a global re-melting event ∼150 Ma after its formation.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"669 \",\"pages\":\"Article 119592\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X25003905\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25003905","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The age and early evolution of the Moon revealed by the Rb-Sr systematics of lunar ferroan anorthosites
The formation of the Moon by a giant impact of an object called Theia onto proto-Earth marks the end of the main stage of Earth’s accretion. However, the timing of this event is controversial, with estimates ranging between ∼50 and ∼220 million years (Ma) after solar system formation. The 87Rb-87Sr system has the potential to resolve this debate, as formation of the Moon resulted in strong fractionation of rubidium from strontium. To better determine the initial 87Sr/86Sr of the Moon, we obtained Rb-Sr isotope data for several lunar ferroan anorthosites, which define an initial 87Sr/86Sr of 0.6990608±0.0000005 (2 s.e.) at 4.360±0.003 Ga. Modeling the pre-giant impact Rb-Sr isotopic evolution of Theia and the proto-Earth reveals that while in the canonical giant impact model no Rb-Sr model age can be determined, all other current impact models yield a Moon formation age of 4.502±0.020 Ga, or 65±20 Ma after solar system formation. When compared to the chronology of lunar samples, this age implies that solidication of the lunar magma ocean took ∼70 Ma, and that the Moon underwent a global re-melting event ∼150 Ma after its formation.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.