Christopher Otto , Prashanth Chandran , Sebastian Weiss , Markus Gross , Gaspard Zoss , Derek Bradley
{"title":"多模态条件3D面部几何生成","authors":"Christopher Otto , Prashanth Chandran , Sebastian Weiss , Markus Gross , Gaspard Zoss , Derek Bradley","doi":"10.1016/j.cag.2025.104325","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new method for multimodal conditional 3D face geometry generation that allows user-friendly control over the output identity and expression via a number of different conditioning signals. Within a single model, we demonstrate 3D faces generated from artistic sketches, portrait photos, Canny edges, FLAME face model parameters, 2D face landmarks, or text prompts. Our approach is based on a diffusion process that generates 3D geometry in a 2D parameterized UV domain. Geometry generation passes each conditioning signal through a set of cross-attention layers (IP-Adapter), one set for each user-defined conditioning signal. The result is an easy-to-use 3D face generation tool that produces topology-consistent, high-quality geometry with fine-grain user control.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104325"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Conditional 3D Face Geometry Generation\",\"authors\":\"Christopher Otto , Prashanth Chandran , Sebastian Weiss , Markus Gross , Gaspard Zoss , Derek Bradley\",\"doi\":\"10.1016/j.cag.2025.104325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a new method for multimodal conditional 3D face geometry generation that allows user-friendly control over the output identity and expression via a number of different conditioning signals. Within a single model, we demonstrate 3D faces generated from artistic sketches, portrait photos, Canny edges, FLAME face model parameters, 2D face landmarks, or text prompts. Our approach is based on a diffusion process that generates 3D geometry in a 2D parameterized UV domain. Geometry generation passes each conditioning signal through a set of cross-attention layers (IP-Adapter), one set for each user-defined conditioning signal. The result is an easy-to-use 3D face generation tool that produces topology-consistent, high-quality geometry with fine-grain user control.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"132 \",\"pages\":\"Article 104325\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325001669\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325001669","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Multimodal Conditional 3D Face Geometry Generation
We present a new method for multimodal conditional 3D face geometry generation that allows user-friendly control over the output identity and expression via a number of different conditioning signals. Within a single model, we demonstrate 3D faces generated from artistic sketches, portrait photos, Canny edges, FLAME face model parameters, 2D face landmarks, or text prompts. Our approach is based on a diffusion process that generates 3D geometry in a 2D parameterized UV domain. Geometry generation passes each conditioning signal through a set of cross-attention layers (IP-Adapter), one set for each user-defined conditioning signal. The result is an easy-to-use 3D face generation tool that produces topology-consistent, high-quality geometry with fine-grain user control.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.