Mengmeng Wang , Wenjia Zhou , Meng Wang , Kai Zhang
{"title":"基于熵驱动扩增和CRISPR/Cas12a信号增强的NF-κB p50检测高灵敏度ECL生物传感器","authors":"Mengmeng Wang , Wenjia Zhou , Meng Wang , Kai Zhang","doi":"10.1016/j.bioelechem.2025.109081","DOIUrl":null,"url":null,"abstract":"<div><div>Transcription factors, particularly NF-κB p50, play crucial roles in regulating gene expression and are involved in several diseases such as cancer, autoimmune disorders, and chronic inflammation. The sensitive detection of NF-κB p50 is essential for clinical diagnostics and therapeutic monitoring. In this study, we present an electrochemiluminescence (ECL) biosensor designed for the highly sensitive and specific detection of NF-κB p50. The biosensor integrates entropy-driven amplification and CRISPR/Cas12a-based signal enhancement to detect trace amounts of NF-κB p50. Upon detection of NF-κB p50, a ternary complex forms with a double-stranded DNA (dsDNA) probe, which prevents subsequent cleavage by exonuclease III (Exo III) and inhibits the CRISPR/Cas12a system. In the absence of NF-κB p50, Exo III digestion triggers entropy-driven amplification, which activates CRISPR/Cas12a, leading to enhanced electrochemical signals. The ECL biosensor demonstrated a detection limit of 0.56 pM, high selectivity, and excellent reproducibility. Furthermore, the biosensor successfully detected NF-κB p50 in complex biological samples, such as HeLa cell lysates, showcasing its potential for clinical applications in disease diagnostics.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"167 ","pages":"Article 109081"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly sensitive ECL biosensor for NF-κB p50 detection based on entropy-driven amplification and CRISPR/Cas12a signal enhancement\",\"authors\":\"Mengmeng Wang , Wenjia Zhou , Meng Wang , Kai Zhang\",\"doi\":\"10.1016/j.bioelechem.2025.109081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transcription factors, particularly NF-κB p50, play crucial roles in regulating gene expression and are involved in several diseases such as cancer, autoimmune disorders, and chronic inflammation. The sensitive detection of NF-κB p50 is essential for clinical diagnostics and therapeutic monitoring. In this study, we present an electrochemiluminescence (ECL) biosensor designed for the highly sensitive and specific detection of NF-κB p50. The biosensor integrates entropy-driven amplification and CRISPR/Cas12a-based signal enhancement to detect trace amounts of NF-κB p50. Upon detection of NF-κB p50, a ternary complex forms with a double-stranded DNA (dsDNA) probe, which prevents subsequent cleavage by exonuclease III (Exo III) and inhibits the CRISPR/Cas12a system. In the absence of NF-κB p50, Exo III digestion triggers entropy-driven amplification, which activates CRISPR/Cas12a, leading to enhanced electrochemical signals. The ECL biosensor demonstrated a detection limit of 0.56 pM, high selectivity, and excellent reproducibility. Furthermore, the biosensor successfully detected NF-κB p50 in complex biological samples, such as HeLa cell lysates, showcasing its potential for clinical applications in disease diagnostics.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"167 \",\"pages\":\"Article 109081\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539425001847\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425001847","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A highly sensitive ECL biosensor for NF-κB p50 detection based on entropy-driven amplification and CRISPR/Cas12a signal enhancement
Transcription factors, particularly NF-κB p50, play crucial roles in regulating gene expression and are involved in several diseases such as cancer, autoimmune disorders, and chronic inflammation. The sensitive detection of NF-κB p50 is essential for clinical diagnostics and therapeutic monitoring. In this study, we present an electrochemiluminescence (ECL) biosensor designed for the highly sensitive and specific detection of NF-κB p50. The biosensor integrates entropy-driven amplification and CRISPR/Cas12a-based signal enhancement to detect trace amounts of NF-κB p50. Upon detection of NF-κB p50, a ternary complex forms with a double-stranded DNA (dsDNA) probe, which prevents subsequent cleavage by exonuclease III (Exo III) and inhibits the CRISPR/Cas12a system. In the absence of NF-κB p50, Exo III digestion triggers entropy-driven amplification, which activates CRISPR/Cas12a, leading to enhanced electrochemical signals. The ECL biosensor demonstrated a detection limit of 0.56 pM, high selectivity, and excellent reproducibility. Furthermore, the biosensor successfully detected NF-κB p50 in complex biological samples, such as HeLa cell lysates, showcasing its potential for clinical applications in disease diagnostics.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.