Anna Coleman , Gabrielle Fischberg , Charles Gong , Joshua Harrington , Tony W.H. Wong
{"title":"类二部转置图的成对(n−1)到-(n−1)不相交路径覆盖","authors":"Anna Coleman , Gabrielle Fischberg , Charles Gong , Joshua Harrington , Tony W.H. Wong","doi":"10.1016/j.dam.2025.07.038","DOIUrl":null,"url":null,"abstract":"<div><div>A paired <span><math><mi>k</mi></math></span>-to-<span><math><mi>k</mi></math></span> disjoint path cover of a graph <span><math><mi>G</mi></math></span> is a collection of pairwise disjoint path subgraphs <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has prescribed vertices <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> as endpoints and the union of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> contains all vertices of <span><math><mi>G</mi></math></span>. In this paper, we introduce bipartite transposition-like graphs, which are inductively constructed from lower ranked bipartite transposition-like graphs. We show that every rank <span><math><mi>n</mi></math></span> bipartite transposition-like graph <span><math><mi>G</mi></math></span> admit a paired <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-to-<span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> disjoint path cover for all choices of <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>T</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span>, provided that <span><math><mi>S</mi></math></span> is in one partite set of <span><math><mi>G</mi></math></span> and <span><math><mi>T</mi></math></span> is in the other.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 449-461"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paired (n−1)-to-(n−1) disjoint path covers in bipartite transposition-like graphs\",\"authors\":\"Anna Coleman , Gabrielle Fischberg , Charles Gong , Joshua Harrington , Tony W.H. Wong\",\"doi\":\"10.1016/j.dam.2025.07.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A paired <span><math><mi>k</mi></math></span>-to-<span><math><mi>k</mi></math></span> disjoint path cover of a graph <span><math><mi>G</mi></math></span> is a collection of pairwise disjoint path subgraphs <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has prescribed vertices <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> as endpoints and the union of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> contains all vertices of <span><math><mi>G</mi></math></span>. In this paper, we introduce bipartite transposition-like graphs, which are inductively constructed from lower ranked bipartite transposition-like graphs. We show that every rank <span><math><mi>n</mi></math></span> bipartite transposition-like graph <span><math><mi>G</mi></math></span> admit a paired <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-to-<span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> disjoint path cover for all choices of <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>T</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span>, provided that <span><math><mi>S</mi></math></span> is in one partite set of <span><math><mi>G</mi></math></span> and <span><math><mi>T</mi></math></span> is in the other.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"376 \",\"pages\":\"Pages 449-461\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004299\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004299","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Paired (n−1)-to-(n−1) disjoint path covers in bipartite transposition-like graphs
A paired -to- disjoint path cover of a graph is a collection of pairwise disjoint path subgraphs such that each has prescribed vertices and as endpoints and the union of contains all vertices of . In this paper, we introduce bipartite transposition-like graphs, which are inductively constructed from lower ranked bipartite transposition-like graphs. We show that every rank bipartite transposition-like graph admit a paired -to- disjoint path cover for all choices of and , provided that is in one partite set of and is in the other.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.