椭圆型边值问题的无网格点配置求解器

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
G.C. Bourantas , A. Sakellarios , N. Malamos , V.C. Loukopoulos , V.N. Burganos , D.I. Fotiadis , V.M. Calo
{"title":"椭圆型边值问题的无网格点配置求解器","authors":"G.C. Bourantas ,&nbsp;A. Sakellarios ,&nbsp;N. Malamos ,&nbsp;V.C. Loukopoulos ,&nbsp;V.N. Burganos ,&nbsp;D.I. Fotiadis ,&nbsp;V.M. Calo","doi":"10.1016/j.amc.2025.129673","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a strong-form meshless point collocation (MPC) solver for the Poisson equation. The Poisson equation allows us to compute approximate pressure corrections and ensure the incompressibility of the velocity field or to solve for the stream function and vorticity. We discretize the spatial domain using quadratic triangular elements in 2D and tetrahedral elements in 3D. The element nodes, including the vertices and edge midpoints, define the point cloud used in the MPC method. We determine the support domain for each using the mesh’s connectivity. When constructing the stiffness matrix, the resulting algebraic systems have the same bandwidth as those generated by the finite element (FE) method. We use direct and iterative solvers to assess the accuracy and efficiency of the MPC method. Our solution strategy enables automatic mesh generation, as nodes are utilized directly in the interpolation construction, eliminating the need to evaluate mesh quality. Finally, we investigate the efficiency of the MPC method in solving linear systems in 3D with a large number of nodes.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129673"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A meshless point collocation solver for elliptic boundary value problems\",\"authors\":\"G.C. Bourantas ,&nbsp;A. Sakellarios ,&nbsp;N. Malamos ,&nbsp;V.C. Loukopoulos ,&nbsp;V.N. Burganos ,&nbsp;D.I. Fotiadis ,&nbsp;V.M. Calo\",\"doi\":\"10.1016/j.amc.2025.129673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a strong-form meshless point collocation (MPC) solver for the Poisson equation. The Poisson equation allows us to compute approximate pressure corrections and ensure the incompressibility of the velocity field or to solve for the stream function and vorticity. We discretize the spatial domain using quadratic triangular elements in 2D and tetrahedral elements in 3D. The element nodes, including the vertices and edge midpoints, define the point cloud used in the MPC method. We determine the support domain for each using the mesh’s connectivity. When constructing the stiffness matrix, the resulting algebraic systems have the same bandwidth as those generated by the finite element (FE) method. We use direct and iterative solvers to assess the accuracy and efficiency of the MPC method. Our solution strategy enables automatic mesh generation, as nodes are utilized directly in the interpolation construction, eliminating the need to evaluate mesh quality. Finally, we investigate the efficiency of the MPC method in solving linear systems in 3D with a large number of nodes.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"510 \",\"pages\":\"Article 129673\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003996\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003996","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对泊松方程,提出了一种强形式无网格点配置(MPC)求解器。泊松方程允许我们计算近似的压力修正,并保证速度场的不可压缩性,或求解流函数和涡度。我们使用二维的二次三角形单元和三维的四面体单元对空间域进行离散化。元素节点,包括顶点和边缘中点,定义了MPC方法中使用的点云。我们使用网格的连通性来确定每个网格的支持域。在构造刚度矩阵时,得到的代数系统与有限元法得到的系统具有相同的带宽。我们使用直接求解和迭代求解来评估MPC方法的准确性和效率。我们的解决方案策略可以实现自动网格生成,因为节点直接用于插值构建,从而消除了评估网格质量的需要。最后,我们研究了MPC方法在求解具有大量节点的三维线性系统中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A meshless point collocation solver for elliptic boundary value problems
We propose a strong-form meshless point collocation (MPC) solver for the Poisson equation. The Poisson equation allows us to compute approximate pressure corrections and ensure the incompressibility of the velocity field or to solve for the stream function and vorticity. We discretize the spatial domain using quadratic triangular elements in 2D and tetrahedral elements in 3D. The element nodes, including the vertices and edge midpoints, define the point cloud used in the MPC method. We determine the support domain for each using the mesh’s connectivity. When constructing the stiffness matrix, the resulting algebraic systems have the same bandwidth as those generated by the finite element (FE) method. We use direct and iterative solvers to assess the accuracy and efficiency of the MPC method. Our solution strategy enables automatic mesh generation, as nodes are utilized directly in the interpolation construction, eliminating the need to evaluate mesh quality. Finally, we investigate the efficiency of the MPC method in solving linear systems in 3D with a large number of nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信