Liliana Ataides Silva Barichello , Rafaela Ribeiro de Brito , Wesley Rodrigues Soares , Aline Sueli de Lima Rodrigues , Alex Rodrigues Gomes , Bruno da Cruz Pádua , Bruna de Oliveira Mendes , Ariane Guimarães , Raíssa de Oliveira Ferreira , Thiarlen Marinho da Luz , Guilherme Malafaia
{"title":"极低温加剧了聚苯乙烯微塑料诱导的雌性小鼠神经内分泌和行为功能障碍","authors":"Liliana Ataides Silva Barichello , Rafaela Ribeiro de Brito , Wesley Rodrigues Soares , Aline Sueli de Lima Rodrigues , Alex Rodrigues Gomes , Bruno da Cruz Pádua , Bruna de Oliveira Mendes , Ariane Guimarães , Raíssa de Oliveira Ferreira , Thiarlen Marinho da Luz , Guilherme Malafaia","doi":"10.1016/j.ntt.2025.107547","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the growing recognition of the impacts of microplastics (MPs) and the intensification of extreme weather events, recent investigations have focused mainly on the consequences of global warming, while overlooking the potential impacts of extreme low-temperature (ELT) events and their interaction with these pollutants. Accordingly, the aim of this study was to assess the integrated effects of <em>co</em>-exposure to environmentally aged polystyrene microplastics (PS-MPs) and ELTs on behavioral, neuroendocrine, metabolic, and histomorphometric biomarkers in female Swiss mice. To this end, animals were orally exposed to environmentally aged PS-MPs (10 mg/kg/day) and maintained in a climate-controlled chamber at 4 °C for 21 days, whereas control groups were kept at 25 °C. In the behavioral domain, co-exposed animals exhibited increased locomotor disorganization, anxiety-like behavior, reduced exploratory efficiency, and impairments in memory and social discrimination, associated with neuroendocrine alterations involving dopamine, serotonin, epinephrine, and corticosterone, depending on the response evaluated. The retention of PS-MPs in the interscapular brown adipose tissue (iBAT) was confirmed by epifluorescence microscopy. It was associated with oxidative stress, decreased antioxidant defenses, and metabolic dysfunction in iBAT, effects exacerbated by ELT exposure. Multivariate analyses, including principal component analysis (PCA), Random Forest, and structural equation modeling (PLS-PM), revealed distinct phenotypic patterns among groups, as well as integrated causal trajectories linking neuroendocrine dysfunction to systemic phenotypic alterations. In conclusion, our study confirms the initial hypothesis by demonstrating that the combination of ELT and PS-MP ingestion amplifies systemic physiological dysfunctions beyond the effects of each individual stressor, highlighting the vulnerability of homeothermic mammals under multiple environmental pressures, and opening new perspectives for ecotoxicology to consider not only the impacts of global warming, but also the deleterious effects of ELTs in interaction with emerging pollutants.</div></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"111 ","pages":"Article 107547"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme low-temperature exacerbates polystyrene microplastic-induced neuroendocrine and behavioral dysfunctions in female mice\",\"authors\":\"Liliana Ataides Silva Barichello , Rafaela Ribeiro de Brito , Wesley Rodrigues Soares , Aline Sueli de Lima Rodrigues , Alex Rodrigues Gomes , Bruno da Cruz Pádua , Bruna de Oliveira Mendes , Ariane Guimarães , Raíssa de Oliveira Ferreira , Thiarlen Marinho da Luz , Guilherme Malafaia\",\"doi\":\"10.1016/j.ntt.2025.107547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the growing recognition of the impacts of microplastics (MPs) and the intensification of extreme weather events, recent investigations have focused mainly on the consequences of global warming, while overlooking the potential impacts of extreme low-temperature (ELT) events and their interaction with these pollutants. Accordingly, the aim of this study was to assess the integrated effects of <em>co</em>-exposure to environmentally aged polystyrene microplastics (PS-MPs) and ELTs on behavioral, neuroendocrine, metabolic, and histomorphometric biomarkers in female Swiss mice. To this end, animals were orally exposed to environmentally aged PS-MPs (10 mg/kg/day) and maintained in a climate-controlled chamber at 4 °C for 21 days, whereas control groups were kept at 25 °C. In the behavioral domain, co-exposed animals exhibited increased locomotor disorganization, anxiety-like behavior, reduced exploratory efficiency, and impairments in memory and social discrimination, associated with neuroendocrine alterations involving dopamine, serotonin, epinephrine, and corticosterone, depending on the response evaluated. The retention of PS-MPs in the interscapular brown adipose tissue (iBAT) was confirmed by epifluorescence microscopy. It was associated with oxidative stress, decreased antioxidant defenses, and metabolic dysfunction in iBAT, effects exacerbated by ELT exposure. Multivariate analyses, including principal component analysis (PCA), Random Forest, and structural equation modeling (PLS-PM), revealed distinct phenotypic patterns among groups, as well as integrated causal trajectories linking neuroendocrine dysfunction to systemic phenotypic alterations. In conclusion, our study confirms the initial hypothesis by demonstrating that the combination of ELT and PS-MP ingestion amplifies systemic physiological dysfunctions beyond the effects of each individual stressor, highlighting the vulnerability of homeothermic mammals under multiple environmental pressures, and opening new perspectives for ecotoxicology to consider not only the impacts of global warming, but also the deleterious effects of ELTs in interaction with emerging pollutants.</div></div>\",\"PeriodicalId\":19144,\"journal\":{\"name\":\"Neurotoxicology and teratology\",\"volume\":\"111 \",\"pages\":\"Article 107547\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology and teratology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892036225001242\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036225001242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Extreme low-temperature exacerbates polystyrene microplastic-induced neuroendocrine and behavioral dysfunctions in female mice
Despite the growing recognition of the impacts of microplastics (MPs) and the intensification of extreme weather events, recent investigations have focused mainly on the consequences of global warming, while overlooking the potential impacts of extreme low-temperature (ELT) events and their interaction with these pollutants. Accordingly, the aim of this study was to assess the integrated effects of co-exposure to environmentally aged polystyrene microplastics (PS-MPs) and ELTs on behavioral, neuroendocrine, metabolic, and histomorphometric biomarkers in female Swiss mice. To this end, animals were orally exposed to environmentally aged PS-MPs (10 mg/kg/day) and maintained in a climate-controlled chamber at 4 °C for 21 days, whereas control groups were kept at 25 °C. In the behavioral domain, co-exposed animals exhibited increased locomotor disorganization, anxiety-like behavior, reduced exploratory efficiency, and impairments in memory and social discrimination, associated with neuroendocrine alterations involving dopamine, serotonin, epinephrine, and corticosterone, depending on the response evaluated. The retention of PS-MPs in the interscapular brown adipose tissue (iBAT) was confirmed by epifluorescence microscopy. It was associated with oxidative stress, decreased antioxidant defenses, and metabolic dysfunction in iBAT, effects exacerbated by ELT exposure. Multivariate analyses, including principal component analysis (PCA), Random Forest, and structural equation modeling (PLS-PM), revealed distinct phenotypic patterns among groups, as well as integrated causal trajectories linking neuroendocrine dysfunction to systemic phenotypic alterations. In conclusion, our study confirms the initial hypothesis by demonstrating that the combination of ELT and PS-MP ingestion amplifies systemic physiological dysfunctions beyond the effects of each individual stressor, highlighting the vulnerability of homeothermic mammals under multiple environmental pressures, and opening new perspectives for ecotoxicology to consider not only the impacts of global warming, but also the deleterious effects of ELTs in interaction with emerging pollutants.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.