{"title":"珍珠粟(Pennisetum glaucum)籽粒发育次生代谢相关udp -糖基转移酶基因全基因组鉴定及表达分析","authors":"Adarsh Kumar, Theint Theint Tun, Vinay Kumar","doi":"10.1016/j.plgene.2025.100541","DOIUrl":null,"url":null,"abstract":"<div><div>This study focused on analysing the UDP-glycosyltransferase gene family in <em>Pennisetum glaucum,</em> which plays an essential role in plant metabolism and glycosylation of the secondary metabolites. We identified 191 UGTs by performing a BLASTp search against the available pearl millet genome, utilizing amino acid sequences of the conserved plant secondary product glycosyltransferase (PSPG) motif and already reported <em>UGT</em> genes from <em>Arabidopsis</em> and maize. Phylogenetic analysis categorized these genes into 18 groups (A–R), and their genomic distribution was mapped across 10 pearl millet chromosomes. Subcellular localization analysis showed that PglUGT proteins localized to the cytoplasm, chloroplast, and nucleus. Functional annotation was carried out by Gene Ontology (GO) analysis of all the <em>PglUGT</em> genes for biological processes, cellular components, and molecular functions. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that a particular set of <em>PglUGT</em> genes are directly linked with secondary metabolite biosynthesis during seed development. Further, TLC analysis documented the presence of glycoside flavonoids (vitexin and orientin) during different grain development stages: just before milky stage (S1), milky stage (S2–3) and physiological mature (S4). Expression profiling of 20 randomly selected <em>PglUGT</em> genes across different grain developmental stages also showed the elevated expression during these stages, underscoring their potential roles in plant growth and grain development. In conclusion, this study documented the identification and characterization of <em>UGT</em> genes in genome of pearl millet and proposed the potential role of UGTs during seed development.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"44 ","pages":"Article 100541"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and expression analysis of UDP-glycosyltransferases genes associated with secondary metabolism during grain development in pearl millet (Pennisetum glaucum)\",\"authors\":\"Adarsh Kumar, Theint Theint Tun, Vinay Kumar\",\"doi\":\"10.1016/j.plgene.2025.100541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focused on analysing the UDP-glycosyltransferase gene family in <em>Pennisetum glaucum,</em> which plays an essential role in plant metabolism and glycosylation of the secondary metabolites. We identified 191 UGTs by performing a BLASTp search against the available pearl millet genome, utilizing amino acid sequences of the conserved plant secondary product glycosyltransferase (PSPG) motif and already reported <em>UGT</em> genes from <em>Arabidopsis</em> and maize. Phylogenetic analysis categorized these genes into 18 groups (A–R), and their genomic distribution was mapped across 10 pearl millet chromosomes. Subcellular localization analysis showed that PglUGT proteins localized to the cytoplasm, chloroplast, and nucleus. Functional annotation was carried out by Gene Ontology (GO) analysis of all the <em>PglUGT</em> genes for biological processes, cellular components, and molecular functions. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that a particular set of <em>PglUGT</em> genes are directly linked with secondary metabolite biosynthesis during seed development. Further, TLC analysis documented the presence of glycoside flavonoids (vitexin and orientin) during different grain development stages: just before milky stage (S1), milky stage (S2–3) and physiological mature (S4). Expression profiling of 20 randomly selected <em>PglUGT</em> genes across different grain developmental stages also showed the elevated expression during these stages, underscoring their potential roles in plant growth and grain development. In conclusion, this study documented the identification and characterization of <em>UGT</em> genes in genome of pearl millet and proposed the potential role of UGTs during seed development.</div></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"44 \",\"pages\":\"Article 100541\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407325000526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407325000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genome-wide identification and expression analysis of UDP-glycosyltransferases genes associated with secondary metabolism during grain development in pearl millet (Pennisetum glaucum)
This study focused on analysing the UDP-glycosyltransferase gene family in Pennisetum glaucum, which plays an essential role in plant metabolism and glycosylation of the secondary metabolites. We identified 191 UGTs by performing a BLASTp search against the available pearl millet genome, utilizing amino acid sequences of the conserved plant secondary product glycosyltransferase (PSPG) motif and already reported UGT genes from Arabidopsis and maize. Phylogenetic analysis categorized these genes into 18 groups (A–R), and their genomic distribution was mapped across 10 pearl millet chromosomes. Subcellular localization analysis showed that PglUGT proteins localized to the cytoplasm, chloroplast, and nucleus. Functional annotation was carried out by Gene Ontology (GO) analysis of all the PglUGT genes for biological processes, cellular components, and molecular functions. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that a particular set of PglUGT genes are directly linked with secondary metabolite biosynthesis during seed development. Further, TLC analysis documented the presence of glycoside flavonoids (vitexin and orientin) during different grain development stages: just before milky stage (S1), milky stage (S2–3) and physiological mature (S4). Expression profiling of 20 randomly selected PglUGT genes across different grain developmental stages also showed the elevated expression during these stages, underscoring their potential roles in plant growth and grain development. In conclusion, this study documented the identification and characterization of UGT genes in genome of pearl millet and proposed the potential role of UGTs during seed development.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.