解析可积系统在同斜轨道和异斜轨道附近的时间周期扰动的不可积性

IF 2.3 2区 数学 Q1 MATHEMATICS
Kazuyuki Yagasaki
{"title":"解析可积系统在同斜轨道和异斜轨道附近的时间周期扰动的不可积性","authors":"Kazuyuki Yagasaki","doi":"10.1016/j.jde.2025.113693","DOIUrl":null,"url":null,"abstract":"<div><div>We consider time-periodic perturbations of analytically integrable systems in the sense of Bogoyavlenskij and study their <em>real-meromorphic</em> nonintegrability, using a generalized version due to Ayoul and Zung of the Morales-Ramis theory. The perturbation terms are assumed to have finite Fourier series in time, and the perturbed systems are rewritten as higher-dimensional autonomous systems having the small parameter as a state variable. We show that if the Melnikov functions are not constant, then the autonomous systems are not <em>real-meromorphically</em> integrable near homo- and heteroclinic orbits. We illustrate the theory for rotational motions of a periodically forced rigid body which provides a mathematical model of a quadrotor helicopter.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113693"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonintegrability of time-periodic perturbations of analytically integrable systems near homo- and heteroclinic orbits\",\"authors\":\"Kazuyuki Yagasaki\",\"doi\":\"10.1016/j.jde.2025.113693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider time-periodic perturbations of analytically integrable systems in the sense of Bogoyavlenskij and study their <em>real-meromorphic</em> nonintegrability, using a generalized version due to Ayoul and Zung of the Morales-Ramis theory. The perturbation terms are assumed to have finite Fourier series in time, and the perturbed systems are rewritten as higher-dimensional autonomous systems having the small parameter as a state variable. We show that if the Melnikov functions are not constant, then the autonomous systems are not <em>real-meromorphically</em> integrable near homo- and heteroclinic orbits. We illustrate the theory for rotational motions of a periodically forced rigid body which provides a mathematical model of a quadrotor helicopter.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"446 \",\"pages\":\"Article 113693\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500720X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500720X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑Bogoyavlenskij意义上的解析可积系统的时间周期扰动,并利用由Ayoul和Zung的Morales-Ramis理论得到的一个推广版本,研究了它们的实亚纯不可积性。假设扰动项在时间上具有有限的傅立叶级数,并将扰动系统改写为具有小参数作为状态变量的高维自治系统。我们证明了如果Melnikov函数不是常数,那么自治系统在同斜轨道和异斜轨道附近不是实亚纯可积的。本文阐述了周期性强制刚体的旋转运动理论,从而建立了四旋翼直升机的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonintegrability of time-periodic perturbations of analytically integrable systems near homo- and heteroclinic orbits
We consider time-periodic perturbations of analytically integrable systems in the sense of Bogoyavlenskij and study their real-meromorphic nonintegrability, using a generalized version due to Ayoul and Zung of the Morales-Ramis theory. The perturbation terms are assumed to have finite Fourier series in time, and the perturbed systems are rewritten as higher-dimensional autonomous systems having the small parameter as a state variable. We show that if the Melnikov functions are not constant, then the autonomous systems are not real-meromorphically integrable near homo- and heteroclinic orbits. We illustrate the theory for rotational motions of a periodically forced rigid body which provides a mathematical model of a quadrotor helicopter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信