六方网络猫爪启发离子凝胶复合材料改善摩擦学性能

Khan Rajib Hossain , Xinle Yao , M. Abdul Jalil , Xiaolong Wang
{"title":"六方网络猫爪启发离子凝胶复合材料改善摩擦学性能","authors":"Khan Rajib Hossain ,&nbsp;Xinle Yao ,&nbsp;M. Abdul Jalil ,&nbsp;Xiaolong Wang","doi":"10.1016/j.jil.2025.100173","DOIUrl":null,"url":null,"abstract":"<div><div>Biomimetic surfaces, inspired by nature, are gaining popularity due to their promising technological applications. Traditional microfabrication techniques face difficulties due to the intricacy of hexagonal microstructures. We successfully developed a bioinspired surface pattern resembling cat paws using innovative 3D laser lithography. Our composite material, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, inspired by the natural architecture of cat paws with their passive capability for biomechanical damping, enables increased dissipation and tribological performance. The iongel surface shows shape memory, resistance to creep properties, stiffness controllability, and self-lubricating behavior under dynamic loading conditions. Mechanical testing demonstrates reduced hysteresis behavior and an increase in energy absorption on PU surfaces with an average friction reduction of ∼9.8 % ± 1.2 %, using the same test conditions (n=3). We clarify the multiscale deformation mechanisms using an in-depth investigation, including finite element simulations. These methods greatly improve the material's tribological performance and show that hydrogel-like networks of fibers and membranes hold the matrix together. These composite materials have great potential for use in sports safety equipment and various engineering domains because of their flexible and soft hexagonal network structure, representing cat paws.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"5 2","pages":"Article 100173"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexagonal network cat paw-inspired iongel composites improve tribological properties\",\"authors\":\"Khan Rajib Hossain ,&nbsp;Xinle Yao ,&nbsp;M. Abdul Jalil ,&nbsp;Xiaolong Wang\",\"doi\":\"10.1016/j.jil.2025.100173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomimetic surfaces, inspired by nature, are gaining popularity due to their promising technological applications. Traditional microfabrication techniques face difficulties due to the intricacy of hexagonal microstructures. We successfully developed a bioinspired surface pattern resembling cat paws using innovative 3D laser lithography. Our composite material, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, inspired by the natural architecture of cat paws with their passive capability for biomechanical damping, enables increased dissipation and tribological performance. The iongel surface shows shape memory, resistance to creep properties, stiffness controllability, and self-lubricating behavior under dynamic loading conditions. Mechanical testing demonstrates reduced hysteresis behavior and an increase in energy absorption on PU surfaces with an average friction reduction of ∼9.8 % ± 1.2 %, using the same test conditions (n=3). We clarify the multiscale deformation mechanisms using an in-depth investigation, including finite element simulations. These methods greatly improve the material's tribological performance and show that hydrogel-like networks of fibers and membranes hold the matrix together. These composite materials have great potential for use in sports safety equipment and various engineering domains because of their flexible and soft hexagonal network structure, representing cat paws.</div></div>\",\"PeriodicalId\":100794,\"journal\":{\"name\":\"Journal of Ionic Liquids\",\"volume\":\"5 2\",\"pages\":\"Article 100173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ionic Liquids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772422025000424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422025000424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

仿生表面受到大自然的启发,由于其有前途的技术应用而越来越受欢迎。由于六边形微结构的复杂性,传统的微加工技术面临困难。我们成功地利用创新的3D激光光刻技术开发了一种类似猫爪的仿生表面图案。我们的复合材料,1-乙基-3-甲基咪唑二(三氟甲基磺酰基)亚胺,灵感来自猫爪的自然结构,具有被动生物力学阻尼能力,能够增加耗散和摩擦学性能。在动态加载条件下,离子凝胶表面具有形状记忆性、抗蠕变性能、刚度可控性和自润滑性能。力学测试表明,在相同的测试条件下(n=3), PU表面的滞回性能降低,能量吸收增加,平均摩擦减少了~ 9.8%±1.2%。我们通过深入研究阐明了多尺度变形机制,包括有限元模拟。这些方法极大地提高了材料的摩擦学性能,并表明纤维和膜的水凝胶状网络将基体结合在一起。这些复合材料具有灵活柔软的六角形网状结构,在运动安全装备和各种工程领域具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hexagonal network cat paw-inspired iongel composites improve tribological properties
Biomimetic surfaces, inspired by nature, are gaining popularity due to their promising technological applications. Traditional microfabrication techniques face difficulties due to the intricacy of hexagonal microstructures. We successfully developed a bioinspired surface pattern resembling cat paws using innovative 3D laser lithography. Our composite material, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, inspired by the natural architecture of cat paws with their passive capability for biomechanical damping, enables increased dissipation and tribological performance. The iongel surface shows shape memory, resistance to creep properties, stiffness controllability, and self-lubricating behavior under dynamic loading conditions. Mechanical testing demonstrates reduced hysteresis behavior and an increase in energy absorption on PU surfaces with an average friction reduction of ∼9.8 % ± 1.2 %, using the same test conditions (n=3). We clarify the multiscale deformation mechanisms using an in-depth investigation, including finite element simulations. These methods greatly improve the material's tribological performance and show that hydrogel-like networks of fibers and membranes hold the matrix together. These composite materials have great potential for use in sports safety equipment and various engineering domains because of their flexible and soft hexagonal network structure, representing cat paws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信