{"title":"传染病监测数据的状态空间建模:随机模拟技术和结构变化检测","authors":"Christopher D. Prashad","doi":"10.1016/j.idm.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>We present an exploration of advanced stochastic simulation techniques for state-space models, with a specific focus on their applications in infectious disease modelling. Utilizing COVID-19 surveillance data from the province of Ontario, Canada, we employ Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods to detect structural changes and pre-dict future trends in case counts. Our approach begins with the application of a Kalman smoothing technique, integrated with MCMC for state sampling within local level and seasonal models, alongside Bayesian inference for non-linear dynamic regression models. We then assess the effectiveness of various priors, including normal, Student's t, Laplace, and horseshoe distributions, in capturing abrupt changes within the data using a Rao-Blackwellized par-ticle filter. Our findings highlight the superior performance of the horseshoe prior in identifying change points and adapting to complex data structures, offering valuable insights for real-time monitoring and forecasting in public health. This study emphasizes the efficacy of state-space models, particu-larly when enhanced with sophisticated prior distributions, in providing a nuanced understanding of infectious disease transmission.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 4","pages":"Pages 1507-1532"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-space modelling for infectious disease surveillance data: Stochastic simulation techniques and structural change detection\",\"authors\":\"Christopher D. Prashad\",\"doi\":\"10.1016/j.idm.2025.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present an exploration of advanced stochastic simulation techniques for state-space models, with a specific focus on their applications in infectious disease modelling. Utilizing COVID-19 surveillance data from the province of Ontario, Canada, we employ Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods to detect structural changes and pre-dict future trends in case counts. Our approach begins with the application of a Kalman smoothing technique, integrated with MCMC for state sampling within local level and seasonal models, alongside Bayesian inference for non-linear dynamic regression models. We then assess the effectiveness of various priors, including normal, Student's t, Laplace, and horseshoe distributions, in capturing abrupt changes within the data using a Rao-Blackwellized par-ticle filter. Our findings highlight the superior performance of the horseshoe prior in identifying change points and adapting to complex data structures, offering valuable insights for real-time monitoring and forecasting in public health. This study emphasizes the efficacy of state-space models, particu-larly when enhanced with sophisticated prior distributions, in providing a nuanced understanding of infectious disease transmission.</div></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":\"10 4\",\"pages\":\"Pages 1507-1532\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468042725000375\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042725000375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
State-space modelling for infectious disease surveillance data: Stochastic simulation techniques and structural change detection
We present an exploration of advanced stochastic simulation techniques for state-space models, with a specific focus on their applications in infectious disease modelling. Utilizing COVID-19 surveillance data from the province of Ontario, Canada, we employ Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods to detect structural changes and pre-dict future trends in case counts. Our approach begins with the application of a Kalman smoothing technique, integrated with MCMC for state sampling within local level and seasonal models, alongside Bayesian inference for non-linear dynamic regression models. We then assess the effectiveness of various priors, including normal, Student's t, Laplace, and horseshoe distributions, in capturing abrupt changes within the data using a Rao-Blackwellized par-ticle filter. Our findings highlight the superior performance of the horseshoe prior in identifying change points and adapting to complex data structures, offering valuable insights for real-time monitoring and forecasting in public health. This study emphasizes the efficacy of state-space models, particu-larly when enhanced with sophisticated prior distributions, in providing a nuanced understanding of infectious disease transmission.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.