Hang Zhao , Kexiong Yu , Yuhang Huang , Renjiao Yi , Chenyang Zhu , Kai Xu
{"title":"大规模组合优化问题的高效扩散求解器","authors":"Hang Zhao , Kexiong Yu , Yuhang Huang , Renjiao Yi , Chenyang Zhu , Kai Xu","doi":"10.1016/j.gmod.2025.101284","DOIUrl":null,"url":null,"abstract":"<div><div>Combinatorial Optimization (CO) problems are fundamentally important in numerous real-world applications across diverse industries, notably computer graphics, characterized by entailing enormous solution space and demanding time-sensitive response. Despite recent advancements in neural solvers, their limited expressiveness struggles to capture the multi-modal nature of CO landscapes. While some research has adopted diffusion models, these methods sample solutions indiscriminately from the entire NP-complete solution space with time-consuming denoising processes, limiting scalability for large-scale problems. We propose <strong>DISCO</strong>, an efficient <strong>DI</strong>ffusion <strong>S</strong>olver for large-scale <strong>C</strong>ombinatorial <strong>O</strong>ptimization problems that excels in both solution quality and inference speed. DISCO’s efficacy is twofold: First, it enhances solution quality by constraining the sampling space to a more meaningful domain guided by solution residues, while preserving the multi-modal properties of the output distributions. Second, it accelerates the denoising process through an analytically solvable approach, enabling solution sampling with very few reverse-time steps and significantly reducing inference time. This inference-speed advantage is further amplified by Jittor, a high-performance learning framework based on just-in-time compiling and meta-operators. DISCO delivers strong performance on large-scale Traveling Salesman Problems and challenging Maximal Independent Set benchmarks, with inference duration up to 5.38 times faster than existing diffusion solver alternatives. We apply DISCO to design 2D/3D TSP Art, enabling the generation of fluid stroke sequences at reduced path costs. By incorporating DISCO’s multi-modal property into a divide-and-conquer strategy, it can further generalize to solve unseen-scale instances out of the box.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"141 ","pages":"Article 101284"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DISCO: Efficient Diffusion Solver for large-scale Combinatorial Optimization problems\",\"authors\":\"Hang Zhao , Kexiong Yu , Yuhang Huang , Renjiao Yi , Chenyang Zhu , Kai Xu\",\"doi\":\"10.1016/j.gmod.2025.101284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Combinatorial Optimization (CO) problems are fundamentally important in numerous real-world applications across diverse industries, notably computer graphics, characterized by entailing enormous solution space and demanding time-sensitive response. Despite recent advancements in neural solvers, their limited expressiveness struggles to capture the multi-modal nature of CO landscapes. While some research has adopted diffusion models, these methods sample solutions indiscriminately from the entire NP-complete solution space with time-consuming denoising processes, limiting scalability for large-scale problems. We propose <strong>DISCO</strong>, an efficient <strong>DI</strong>ffusion <strong>S</strong>olver for large-scale <strong>C</strong>ombinatorial <strong>O</strong>ptimization problems that excels in both solution quality and inference speed. DISCO’s efficacy is twofold: First, it enhances solution quality by constraining the sampling space to a more meaningful domain guided by solution residues, while preserving the multi-modal properties of the output distributions. Second, it accelerates the denoising process through an analytically solvable approach, enabling solution sampling with very few reverse-time steps and significantly reducing inference time. This inference-speed advantage is further amplified by Jittor, a high-performance learning framework based on just-in-time compiling and meta-operators. DISCO delivers strong performance on large-scale Traveling Salesman Problems and challenging Maximal Independent Set benchmarks, with inference duration up to 5.38 times faster than existing diffusion solver alternatives. We apply DISCO to design 2D/3D TSP Art, enabling the generation of fluid stroke sequences at reduced path costs. By incorporating DISCO’s multi-modal property into a divide-and-conquer strategy, it can further generalize to solve unseen-scale instances out of the box.</div></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"141 \",\"pages\":\"Article 101284\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070325000311\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070325000311","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
DISCO: Efficient Diffusion Solver for large-scale Combinatorial Optimization problems
Combinatorial Optimization (CO) problems are fundamentally important in numerous real-world applications across diverse industries, notably computer graphics, characterized by entailing enormous solution space and demanding time-sensitive response. Despite recent advancements in neural solvers, their limited expressiveness struggles to capture the multi-modal nature of CO landscapes. While some research has adopted diffusion models, these methods sample solutions indiscriminately from the entire NP-complete solution space with time-consuming denoising processes, limiting scalability for large-scale problems. We propose DISCO, an efficient DIffusion Solver for large-scale Combinatorial Optimization problems that excels in both solution quality and inference speed. DISCO’s efficacy is twofold: First, it enhances solution quality by constraining the sampling space to a more meaningful domain guided by solution residues, while preserving the multi-modal properties of the output distributions. Second, it accelerates the denoising process through an analytically solvable approach, enabling solution sampling with very few reverse-time steps and significantly reducing inference time. This inference-speed advantage is further amplified by Jittor, a high-performance learning framework based on just-in-time compiling and meta-operators. DISCO delivers strong performance on large-scale Traveling Salesman Problems and challenging Maximal Independent Set benchmarks, with inference duration up to 5.38 times faster than existing diffusion solver alternatives. We apply DISCO to design 2D/3D TSP Art, enabling the generation of fluid stroke sequences at reduced path costs. By incorporating DISCO’s multi-modal property into a divide-and-conquer strategy, it can further generalize to solve unseen-scale instances out of the box.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.