用于光学逻辑运算的可调偏振比的裂盘超材料

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junle Li, Daoye Zheng, Yunche Zhu, Yu-Sheng Lin
{"title":"用于光学逻辑运算的可调偏振比的裂盘超材料","authors":"Junle Li,&nbsp;Daoye Zheng,&nbsp;Yunche Zhu,&nbsp;Yu-Sheng Lin","doi":"10.1016/j.materresbull.2025.113738","DOIUrl":null,"url":null,"abstract":"<div><div>Terahertz (THz) metamaterials hold promise for advanced communication and sensing applications, yet achieving high polarization selectivity and functional integration remains challenging. Here, we propose a tunable split-disk resonator (SDR) to address these challenges. This is an excellent demonstration of THz metamaterial that achieves both ultra-high polarization ratio and programmable logic gates solely through geometric tuning, without relying on phase-change materials, external biasing, or hybrid substrates. By synergistically adjusting the SDR height (<em>h</em>) and rotation angle (<em>θ</em>), the structure achieves the high polarization ratio (PR &gt; 3579) at 0.79 THz under the conditions of <em>h</em> = 5 µm and <em>θ</em> = 180°, outperforming prior metamaterials by more than two orders of magnitude. Furthermore, with fixed 90°, SDR devices enable polarization-state encoding for THz logic operations, realizing reconfigurable inverting, XNOR, and buffer gates at 0.60 THz, 0.66 THz, and 0.73 THz, respectively. Numerical simulations reveal that logic functionality arises from transmission intensity thresholds (50 %) defined by structural parameters and polarization inputs. This work pioneers a new approach for integrating photonic logic and polarization filtering in a single THz metamaterial, offering a reconfigurable and fabrication-ready route toward all-optical computing systems.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113738"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Split-disk metamaterial with tunable polarization ratio for optical logic operation application\",\"authors\":\"Junle Li,&nbsp;Daoye Zheng,&nbsp;Yunche Zhu,&nbsp;Yu-Sheng Lin\",\"doi\":\"10.1016/j.materresbull.2025.113738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Terahertz (THz) metamaterials hold promise for advanced communication and sensing applications, yet achieving high polarization selectivity and functional integration remains challenging. Here, we propose a tunable split-disk resonator (SDR) to address these challenges. This is an excellent demonstration of THz metamaterial that achieves both ultra-high polarization ratio and programmable logic gates solely through geometric tuning, without relying on phase-change materials, external biasing, or hybrid substrates. By synergistically adjusting the SDR height (<em>h</em>) and rotation angle (<em>θ</em>), the structure achieves the high polarization ratio (PR &gt; 3579) at 0.79 THz under the conditions of <em>h</em> = 5 µm and <em>θ</em> = 180°, outperforming prior metamaterials by more than two orders of magnitude. Furthermore, with fixed 90°, SDR devices enable polarization-state encoding for THz logic operations, realizing reconfigurable inverting, XNOR, and buffer gates at 0.60 THz, 0.66 THz, and 0.73 THz, respectively. Numerical simulations reveal that logic functionality arises from transmission intensity thresholds (50 %) defined by structural parameters and polarization inputs. This work pioneers a new approach for integrating photonic logic and polarization filtering in a single THz metamaterial, offering a reconfigurable and fabrication-ready route toward all-optical computing systems.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113738\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825004453\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004453","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹(THz)超材料有望用于先进的通信和传感应用,但实现高极化选择性和功能集成仍然具有挑战性。在这里,我们提出了一种可调谐裂盘谐振器(SDR)来解决这些挑战。这是太赫兹超材料仅通过几何调谐即可实现超高极化比和可编程逻辑门的极好演示,而无需依赖于相变材料,外部偏置或混合衬底。通过协同调节SDR高度(h)和旋转角度(θ),该结构在h = 5µm和θ = 180°条件下,在0.79 THz处实现了高极化比(PR > 3579),优于现有超材料两个数量级以上。此外,在固定90°的情况下,SDR器件可以对太赫兹逻辑运算进行极化状态编码,分别在0.60 THz、0.66 THz和0.73 THz实现可重构的逆变门、XNOR门和缓冲门。数值模拟表明,逻辑功能由结构参数和极化输入定义的传输强度阈值(50%)产生。这项工作开创了在单一太赫兹超材料中集成光子逻辑和偏振滤波的新方法,为全光计算系统提供了可重构和可制造的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Split-disk metamaterial with tunable polarization ratio for optical logic operation application

Split-disk metamaterial with tunable polarization ratio for optical logic operation application
Terahertz (THz) metamaterials hold promise for advanced communication and sensing applications, yet achieving high polarization selectivity and functional integration remains challenging. Here, we propose a tunable split-disk resonator (SDR) to address these challenges. This is an excellent demonstration of THz metamaterial that achieves both ultra-high polarization ratio and programmable logic gates solely through geometric tuning, without relying on phase-change materials, external biasing, or hybrid substrates. By synergistically adjusting the SDR height (h) and rotation angle (θ), the structure achieves the high polarization ratio (PR > 3579) at 0.79 THz under the conditions of h = 5 µm and θ = 180°, outperforming prior metamaterials by more than two orders of magnitude. Furthermore, with fixed 90°, SDR devices enable polarization-state encoding for THz logic operations, realizing reconfigurable inverting, XNOR, and buffer gates at 0.60 THz, 0.66 THz, and 0.73 THz, respectively. Numerical simulations reveal that logic functionality arises from transmission intensity thresholds (50 %) defined by structural parameters and polarization inputs. This work pioneers a new approach for integrating photonic logic and polarization filtering in a single THz metamaterial, offering a reconfigurable and fabrication-ready route toward all-optical computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信