李超代数表示的同调谱和幂零定理

IF 0.8 2区 数学 Q2 MATHEMATICS
Matthew H. Hamil , Daniel K. Nakano
{"title":"李超代数表示的同调谱和幂零定理","authors":"Matthew H. Hamil ,&nbsp;Daniel K. Nakano","doi":"10.1016/j.jalgebra.2025.07.027","DOIUrl":null,"url":null,"abstract":"<div><div>In the study of cohomology of finite group schemes it is well known that nilpotence theorems play a key role in determining the spectrum of the cohomology ring. Balmer recently showed that there is a more general notion of a nilpotence theorem for tensor triangulated categories through the use of homological residue fields and the connection with the homological spectrum. The homological spectrum (like the theory of <em>π</em>-points) can be viewed as a topological space that provides an important realization of the Balmer spectrum.</div><div>Let <span><math><mi>g</mi><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>⊕</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> be a classical Lie superalgebra over <span><math><mi>C</mi></math></span>. In this paper, the authors consider the tensor triangular geometry for the stable category of finite-dimensional Lie superalgebra representations: <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>. The localizing subcategories for the detecting subalgebra <span><math><mi>f</mi></math></span> are classified which answers a question of Boe, Kujawa, and Nakano. As a consequence of these results, the authors prove a nilpotence theorem and determine the homological spectrum for the stable module category of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub></math></span>. The authors also verify Balmer's “Nerves-of-Steel” Conjecture for <span><math><mi>stab</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span> where <span><math><mi>f</mi></math></span> is a detecting subalgebra.</div><div>Let <em>F</em> (resp. <em>G</em>) be the associated supergroup (scheme) for <span><math><mi>f</mi></math></span> (resp. <span><math><mi>g</mi></math></span>). Under the condition that <em>F</em> is a splitting subgroup for <em>G</em>, the results for the detecting subalgebra can be used to prove a nilpotence theorem for <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and to determine the homological spectrum in this case. Then using natural assumptions in terms of realization of supports, the authors provide a method to explicitly realize the Balmer spectrum of <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and prove the Nerves-of-Steel Conjecture in this case which includes all classical Lie superalgebras of Type <em>A</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 801-830"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The homological spectrum and nilpotence theorems for Lie superalgebra representations\",\"authors\":\"Matthew H. Hamil ,&nbsp;Daniel K. Nakano\",\"doi\":\"10.1016/j.jalgebra.2025.07.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the study of cohomology of finite group schemes it is well known that nilpotence theorems play a key role in determining the spectrum of the cohomology ring. Balmer recently showed that there is a more general notion of a nilpotence theorem for tensor triangulated categories through the use of homological residue fields and the connection with the homological spectrum. The homological spectrum (like the theory of <em>π</em>-points) can be viewed as a topological space that provides an important realization of the Balmer spectrum.</div><div>Let <span><math><mi>g</mi><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>⊕</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> be a classical Lie superalgebra over <span><math><mi>C</mi></math></span>. In this paper, the authors consider the tensor triangular geometry for the stable category of finite-dimensional Lie superalgebra representations: <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>. The localizing subcategories for the detecting subalgebra <span><math><mi>f</mi></math></span> are classified which answers a question of Boe, Kujawa, and Nakano. As a consequence of these results, the authors prove a nilpotence theorem and determine the homological spectrum for the stable module category of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub></math></span>. The authors also verify Balmer's “Nerves-of-Steel” Conjecture for <span><math><mi>stab</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span> where <span><math><mi>f</mi></math></span> is a detecting subalgebra.</div><div>Let <em>F</em> (resp. <em>G</em>) be the associated supergroup (scheme) for <span><math><mi>f</mi></math></span> (resp. <span><math><mi>g</mi></math></span>). Under the condition that <em>F</em> is a splitting subgroup for <em>G</em>, the results for the detecting subalgebra can be used to prove a nilpotence theorem for <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and to determine the homological spectrum in this case. Then using natural assumptions in terms of realization of supports, the authors provide a method to explicitly realize the Balmer spectrum of <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and prove the Nerves-of-Steel Conjecture in this case which includes all classical Lie superalgebras of Type <em>A</em>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 801-830\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在有限群格式上同调的研究中,幂零定理在确定上同调环的谱方面起着关键的作用。Balmer最近通过使用同调剩余域和与同调谱的联系,证明了张量三角化范畴的幂零定理的一个更一般的概念。同调谱(与π点理论一样)可以看作是一个拓扑空间,它提供了巴尔默谱的重要实现。设g=g0¯⊕g1¯是c上的一个经典李超代数。在本文中,作者考虑了有限维李超代数稳定范畴的张量三角形几何:stab(F(g,g0¯))。对检测子代数f的局部化子范畴进行了分类,回答了Boe、Kujawa和Nakano的问题。根据这些结果,证明了F(F,f0¯)的一个幂零定理,并确定了稳定模范畴的同调谱。作者还验证了stab(F(F,f0¯))的Balmer的“钢神经”猜想,其中F是一个检测子代数。设F (p。G)为f (resp)的关联超群(方案)。g)。在F是G的分裂子群的条件下,检测子代数的结果可以用来证明stab(F(G, g0¯))的幂零定理,并确定这种情况下的同调谱。然后利用支撑实现方面的自然假设,给出了一种显式实现stab(F(g,g0¯))的Balmer谱的方法,并在这种情况下证明了包含所有经典a型李超代数的钢神经猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The homological spectrum and nilpotence theorems for Lie superalgebra representations
In the study of cohomology of finite group schemes it is well known that nilpotence theorems play a key role in determining the spectrum of the cohomology ring. Balmer recently showed that there is a more general notion of a nilpotence theorem for tensor triangulated categories through the use of homological residue fields and the connection with the homological spectrum. The homological spectrum (like the theory of π-points) can be viewed as a topological space that provides an important realization of the Balmer spectrum.
Let g=g0¯g1¯ be a classical Lie superalgebra over C. In this paper, the authors consider the tensor triangular geometry for the stable category of finite-dimensional Lie superalgebra representations: stab(F(g,g0¯)). The localizing subcategories for the detecting subalgebra f are classified which answers a question of Boe, Kujawa, and Nakano. As a consequence of these results, the authors prove a nilpotence theorem and determine the homological spectrum for the stable module category of F(f,f0¯). The authors also verify Balmer's “Nerves-of-Steel” Conjecture for stab(F(f,f0¯)) where f is a detecting subalgebra.
Let F (resp. G) be the associated supergroup (scheme) for f (resp. g). Under the condition that F is a splitting subgroup for G, the results for the detecting subalgebra can be used to prove a nilpotence theorem for stab(F(g,g0¯)), and to determine the homological spectrum in this case. Then using natural assumptions in terms of realization of supports, the authors provide a method to explicitly realize the Balmer spectrum of stab(F(g,g0¯)), and prove the Nerves-of-Steel Conjecture in this case which includes all classical Lie superalgebras of Type A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信