{"title":"李超代数表示的同调谱和幂零定理","authors":"Matthew H. Hamil , Daniel K. Nakano","doi":"10.1016/j.jalgebra.2025.07.027","DOIUrl":null,"url":null,"abstract":"<div><div>In the study of cohomology of finite group schemes it is well known that nilpotence theorems play a key role in determining the spectrum of the cohomology ring. Balmer recently showed that there is a more general notion of a nilpotence theorem for tensor triangulated categories through the use of homological residue fields and the connection with the homological spectrum. The homological spectrum (like the theory of <em>π</em>-points) can be viewed as a topological space that provides an important realization of the Balmer spectrum.</div><div>Let <span><math><mi>g</mi><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>⊕</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> be a classical Lie superalgebra over <span><math><mi>C</mi></math></span>. In this paper, the authors consider the tensor triangular geometry for the stable category of finite-dimensional Lie superalgebra representations: <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>. The localizing subcategories for the detecting subalgebra <span><math><mi>f</mi></math></span> are classified which answers a question of Boe, Kujawa, and Nakano. As a consequence of these results, the authors prove a nilpotence theorem and determine the homological spectrum for the stable module category of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub></math></span>. The authors also verify Balmer's “Nerves-of-Steel” Conjecture for <span><math><mi>stab</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span> where <span><math><mi>f</mi></math></span> is a detecting subalgebra.</div><div>Let <em>F</em> (resp. <em>G</em>) be the associated supergroup (scheme) for <span><math><mi>f</mi></math></span> (resp. <span><math><mi>g</mi></math></span>). Under the condition that <em>F</em> is a splitting subgroup for <em>G</em>, the results for the detecting subalgebra can be used to prove a nilpotence theorem for <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and to determine the homological spectrum in this case. Then using natural assumptions in terms of realization of supports, the authors provide a method to explicitly realize the Balmer spectrum of <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and prove the Nerves-of-Steel Conjecture in this case which includes all classical Lie superalgebras of Type <em>A</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 801-830"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The homological spectrum and nilpotence theorems for Lie superalgebra representations\",\"authors\":\"Matthew H. Hamil , Daniel K. Nakano\",\"doi\":\"10.1016/j.jalgebra.2025.07.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the study of cohomology of finite group schemes it is well known that nilpotence theorems play a key role in determining the spectrum of the cohomology ring. Balmer recently showed that there is a more general notion of a nilpotence theorem for tensor triangulated categories through the use of homological residue fields and the connection with the homological spectrum. The homological spectrum (like the theory of <em>π</em>-points) can be viewed as a topological space that provides an important realization of the Balmer spectrum.</div><div>Let <span><math><mi>g</mi><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>⊕</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> be a classical Lie superalgebra over <span><math><mi>C</mi></math></span>. In this paper, the authors consider the tensor triangular geometry for the stable category of finite-dimensional Lie superalgebra representations: <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>. The localizing subcategories for the detecting subalgebra <span><math><mi>f</mi></math></span> are classified which answers a question of Boe, Kujawa, and Nakano. As a consequence of these results, the authors prove a nilpotence theorem and determine the homological spectrum for the stable module category of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub></math></span>. The authors also verify Balmer's “Nerves-of-Steel” Conjecture for <span><math><mi>stab</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span> where <span><math><mi>f</mi></math></span> is a detecting subalgebra.</div><div>Let <em>F</em> (resp. <em>G</em>) be the associated supergroup (scheme) for <span><math><mi>f</mi></math></span> (resp. <span><math><mi>g</mi></math></span>). Under the condition that <em>F</em> is a splitting subgroup for <em>G</em>, the results for the detecting subalgebra can be used to prove a nilpotence theorem for <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and to determine the homological spectrum in this case. Then using natural assumptions in terms of realization of supports, the authors provide a method to explicitly realize the Balmer spectrum of <span><math><mtext>stab</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>g</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and prove the Nerves-of-Steel Conjecture in this case which includes all classical Lie superalgebras of Type <em>A</em>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 801-830\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The homological spectrum and nilpotence theorems for Lie superalgebra representations
In the study of cohomology of finite group schemes it is well known that nilpotence theorems play a key role in determining the spectrum of the cohomology ring. Balmer recently showed that there is a more general notion of a nilpotence theorem for tensor triangulated categories through the use of homological residue fields and the connection with the homological spectrum. The homological spectrum (like the theory of π-points) can be viewed as a topological space that provides an important realization of the Balmer spectrum.
Let be a classical Lie superalgebra over . In this paper, the authors consider the tensor triangular geometry for the stable category of finite-dimensional Lie superalgebra representations: . The localizing subcategories for the detecting subalgebra are classified which answers a question of Boe, Kujawa, and Nakano. As a consequence of these results, the authors prove a nilpotence theorem and determine the homological spectrum for the stable module category of . The authors also verify Balmer's “Nerves-of-Steel” Conjecture for where is a detecting subalgebra.
Let F (resp. G) be the associated supergroup (scheme) for (resp. ). Under the condition that F is a splitting subgroup for G, the results for the detecting subalgebra can be used to prove a nilpotence theorem for , and to determine the homological spectrum in this case. Then using natural assumptions in terms of realization of supports, the authors provide a method to explicitly realize the Balmer spectrum of , and prove the Nerves-of-Steel Conjecture in this case which includes all classical Lie superalgebras of Type A.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.